XII

13 – 17 2021 .

001.8:544.6 (043.2)

143405, ., . . , . 1 . +7969-077-7272 e-mail: akalodgic.ru@gmail.com www.ilpa-tech.ru

ISBN 978-5-905364-18-1

. . . , 2021

©

sakusmanov@yandex.ru 75 1991 50 400 Surface Engineering Elsevier. and Applied Electrochemistry **« »**.

5

» II

_

krivenko@icp.ac.ru

5.5 . . , () WoS

, , ,

, ,

, « ,

, ,

,

,

-, ,

, - 19-119061890019-5.

6

```
1
                                                         , 156005,
          2
                                                                       , 3003
         3
                                                                    , MD-2028
                                  aidikusar@gmail.com
                                                         [1],
                                                                    ( 18 10
                                                                                  612)
                                                           ( )
1 - 100 / <sup>2</sup>
                                         : a)
                                                       , / )
            (FRD,
                                20-2000 μs,
                                                                                    FRD
                                (s 2), )
                   (PDM) [2]
(
     ) [3]
                                                         FRD
   1. Dikusar A.I., Likrizon E.A., Dikusar A.I. // Surf. Eng. Appl. Electrochem. 2021.V 57.P. 10.
   2. Macdonald D.D. // Electrochim. Acta. 2011. V. 56. P. 1761.
   3.
                                               . 1989.
                                                                        . C. 140
                                                                                2020
  "Smartelectrodes" (778537),
                                               ANCD (
                                                              ) 19.80013.50.07.06 /BL,
                             . . . ( . . ,
                                                                )
```

· -

[1],

- ?

· - -

· - :

1. . . // . 2006. . 51. 4. . 675.

20-03-00275

ruslanfelix@yandex.ru

)

).

,

,

,

· -

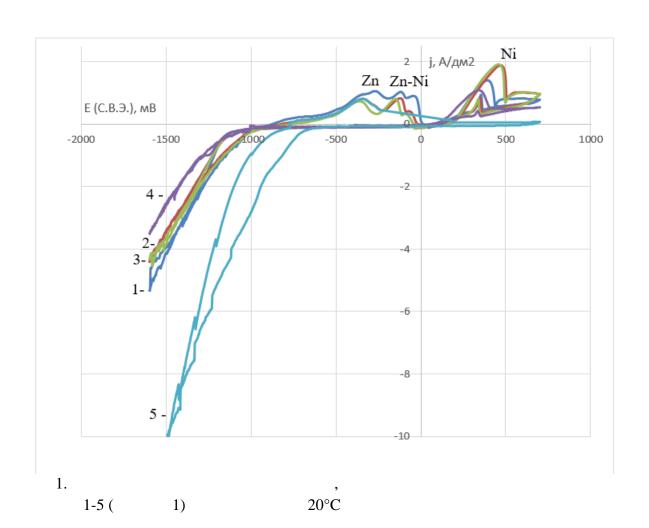
, ,

· , , , ,

, ,

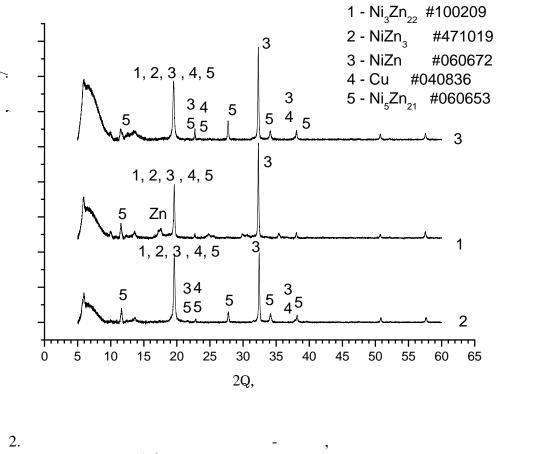
· -

Zn-Ni 10 – Zn-Co . 9.5


, ,

,

1, 4 0.3 - 0.4 ,


5 -0.3 .

, 1 - 3 -0.3 - -0.1 ,

1. Zn-Ni, Zn, 20-50°C, pH 6.1-6.5 Ni. 1 3 4 5 0.704 0.704 0.704 0.704 0.704 $(NH_4)_2C_2O_4 \times H_2O$ 0.063 0.042 0.063 0.084 $NiSO_4 \times 7H_2O$ 0 ZnSO₄×7H₂O 0.084 0.063 0.042 0 0.063

Ni, Ni $_5$ Zn $_{21}$, Ni, Ni $_5$ Zn $_{21}$, Ni, Ni $_5$ Zn $_{21}$ (2).

2. 1-3

(FZZW2020-0010).
(14-03-00360-).

alekseeva_ev@yahoo.com

, $+60^{\circ}$. ,

. -40°

#20-03-00746

-

maxdon79@yndex.ru

, 1-2

 Mo_{2} .

3...10 ,

. 20-30%-NaOH

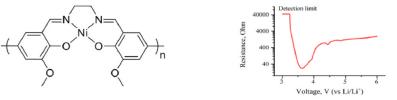
· (.).

; -.

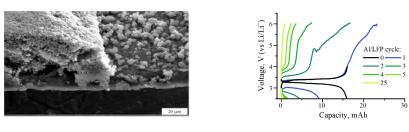
(.). 800

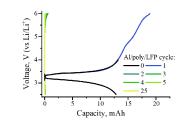
.

FZZW-2020-0010.


Fe-W :

```
1
                                                                  , MD-2028
            2
                                                        , 156005
 3
                                                                     , 3003
                           aidikusar@gmail.com
 (W,Mo, Re)
                                                                                    [1],
              )
            .).
           50%
                  (
                        .)
                                      Fe-W
       )
   20-80^{0}
                          ")
                                      ([FeO ] ).
                                      [1-3].
```


- 1. Eliaz N., Gileadi N. // Modern Aspects of Electrochem. 2008, 42, 191.
- 2. Podlaha E.J., Landolt D.J. // Electrochem. Soc.1996 V. 143. P. 893.
- 3. Krasikov V.I., Krasikov A.V.// Bulletin SPb STU (TU). 2016. V. 36. P. 12.


· ,

poly[Ni(CH₃ Salen)], (. 1 ,). 6,0 . poly[Ni(CH₃OSalen)]

(19-19-00175).

6 Solne4nyjkrug@bk.ru 6. 5% 2,6 / 6 5% 30 ± 2 . 5 30 600 850 6 10 750° 90 820 HV (2 6). 300 3 . 1) (. 2), 6 Δm , MF Δm , MF 750 T, °C 5 10 30 15 20 25 650 600 700 *t*, мин 1,555 / , 10 1 . 2. . 1. 750° 10

79-10094-)

18-

valeria bel@mail.ru, balmasov@isuct.ru

·
,
,
,

·

· ;

, 0,9%

.

0,15 / .

3 .

« »

```
5,10,15,20-
                                                    (4-
                                                                                                            1,2
 1
                              <sup>3</sup>University Union Nicola Tesla, Belgrade, Serbia
                                                     mvt@isc-ras.ru
                                                  [1].
                                                                         CO<sub>2</sub>:
                                                                                                            CO
                                                                                          Pt [2].
                                                      5,10,15,20-
                                                                                 (4-
                                                                   I, mA
            I, mA
                                                                 0,10
           0,02
                                                                 0,05 -
           0,00-
                                                                 0,00
           -0,02
                                                                 -0,05
           -0,04
                                                                 -0,10
           -0,06
                                                                 -0,15
           -0,08
                                                                 -0,20
           -0,10
                                                                 -0,25
           -0,12
                                                                 -0,30
           -0,14
           -0,16
                                                                 -0,35
                  -1,2
                          -0,8
                                  -0,4
                                          0,0
                                                                       -1,2
                                                                              -1,0
                                                                                    -0,8
                                                                                          -0,6
                                                                                                 -0,4
                                                       E, B
                                                                                          :1-
          . 1.
                               , 2 -
                                                                                                   , 3 –
                                                                                                  : 1 -
_2T(4-Py)P.
                                                                                                             ITO-
                                             , 2 -
                                                       ITO-
                                         , 3 -
                                                                               _2T(4-Py)P.
                                                                                                                 - {}_{2}T(4-Py)P
 12
                                                                             6 % (
                                                                                         . 1 ).
                                                                                            2
```

1. Kruusenberg I., Matisen L., Tammeveski K. $\!\!/\!\!/$ Journal of Nanoscience and Nanotechnology. 2013. V. 13. N. 1. P. 621-627.

2. Yamazaki S., Yao M., Siroma Z., Ioroi T., Yasuda K. // J. Phys. Chem. C. 2010. V. 114. P. 21856-21860.

```
, volkovstst@mail.ru
                   3
                                                              1790-
                                1800
                                                          » («
                                                                                      »).
(«
                                                                     ).
                                                                                             70
                           »,
                                                                                    1880-
                                                                                [1-3].
                         1900-
                                                                         1919
                                                   [4],
       1.
                                                                      , 1974. 568 .
      2.
                                                                         ",1975.568 .
      .
4.
                                           , 1995. – 319 .
                                                                     , 1979. – 259 .
```

```
1
   2
                              (
     ),
                                                0,3
                              20 ° .
           40
                                                               28\,\pm\,6
             101 \pm 1
                                               50 \pm 1
         Cu-Au-Cu.
                                                                     -0,1/-0,2
                                                  -16
                                        )
                                                       Ag/AgCl .
                    04-
                                          -1
                                                           0,7 \pm 0,1
                  .1),
                                                                 45 \pm 15 %.
       a)
                                                                    есть
                                                               электрический
                                                                   контакт
                                                                       нет
                                                                 - электрического
                                                                     контакта
   . 1.
                                                                      ~1
                        : 3D
                                    (a)
                        ( ).
                                                            -1959.2020.3
                              (
                                            075-15-2020-264).
```

```
Zr_{0.84}Y_{0.16}O_{1.92}
                                                . .1,2,
    1
              3
                                       elenagordeeva_fnm@mail.ru
                                                                                    ).
                800-1000 ° .
                                                    500–700 °
                                                                    10
                  ).
                                                                                           Zr_{0.84}Y_{0.16}O_{1.92}
(YSZ)
0.1 	 H_3PO_4
                  195 .
     1500 ° .
                                              346 \pm 53
                                                                             ~ 40%,
1163 \pm 45 ^{3}/(^{2} \cdot \cdot \cdot ).
                      YSZ
                                                             5 , 3000
                                (500
                                                                                                60 ).
                                                                              YSZ
                                                                                                 4.8\,\pm\,0.2
                                                                               1100 ° .
                               YSZ
                                 1500/1300\ ^{\circ} .
                    YSZ
                                                  YSZ
                                                                                500-900 °
                                                                                        YSZ
1 \cdot 10^{-3} - 1 \cdot 10^{-1}
                                                                                18-29-11097.
```

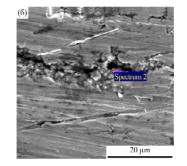
sasha_uk-r@mail.ru

(, , , ,

4-20 , [1].

[2], , , , , [3]

,


. , ,

FeOH

.

Element	Weight %	Atomic %
Fe K	61.32	83.92
WM	38.68	16.08

Element	Weight %	Atomic %
OK	10.21	35.99
Fe K	51.87	52.38
WM	37.92	11.63

1 – (SEM) , , ()

0,2 /

- 1. Eliaz N., Gileadi E. Induced codeposition of alloys of Tungsten, Molybdenum and Rhenium with transitiom metals. // Modern Aspects of Electrochemistry. 2008, 42, p.191-301.
- $2.\ Tsyntsaru\ N.,\ Cesiulis\ H.,\ Donten\ M.,\ et\ al.\ //\ Surf. Eng.\ Appl.\ Electrochem.\ 2012,\ v.48,\ p.491-520.$
- 3. Brenner A. Electrodepositions of alloys. Principle and Practice. $\!\!\!/\!\!\!/$ Academic Press., New York and London. 1963. 658 p.

```
BMImX (X = TFSI^-, OTf^-, DCA^-)
                                              epg@isc-ras.ru
                                                    (
                                                         )
                                                                                                        99
                                                               1-
                                                                        -3-
                                                                                                 (BMIm^{+})
                                 (GNT)
                                                                                                 TFSI<sup>-</sup> (
                              OTf,
                                                           DCA<sup>-</sup>) 1-
                                                                                                           55
                                               (Halloysitenanoclay, Al_2Si_2O_5(OH)_4\times2 H_2O)
     . %) -
                    80^{\circ}
                                       24 .
                                                                                           (
                                                                          ).
             (
                                                          )
                                                                                     5
                                                                (23 \pm 1)
                                                                Solartron SI 1260A Impedance/Gain-
Phaseanalyzer (Solartronanalytical,
                                                                                                      10
                                                            )
                                                                                                      ZPlot
ZView 2.
                                                                                         .1 [1].
                                   .1-
                                                                                          )
                                                       : R
                                                     ), R -
Z_{CPE}\ -
                                                                                                 n=0.9\pm0.01,
                        Q=C.
          DCA<sup>-</sup>
                                                                                                         99.
```

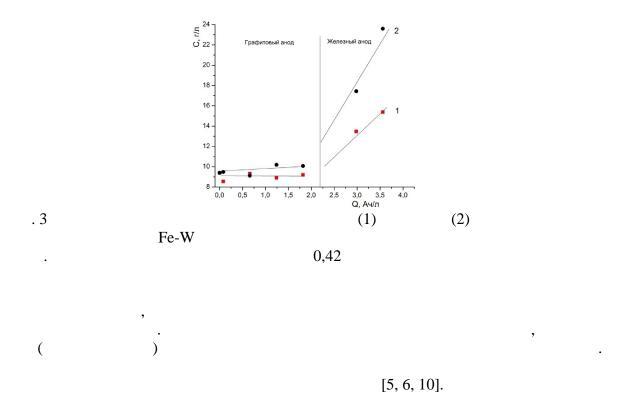
1. General Descriptions of Aluminum Electolytic Capacitors. 1-6 Characteristics. Technical notes CAT.8101C. Nichicon Corporation.

18-29-12012_

```
tdavydkova@muctr.ru
        (
                       ),
        40 - 50
(
                   ),
                                                                   10
                                                                          15%.
                                      ( , %)
                                                                            20
               1
                                   (,%)
                                                                         (50%,
75%, 95%).
           1 –
                                          *100
                                                   50
                                                           25
                                  , %
                                                   50
                                                                     95
                                          0
                                                           75
                                          8-10
                                                  4-6
                                                          2-3
    [0,2 / ]
                                           10
                                                   20
                                                         50
                                                                  100
     10 3/, 3-
                                         (24
                                                ),
- 0,2 /
    2400 ,
                                                                           (0,4)
     ) (
                                                                       0.8 - 1.4
                                      5 – 10 /
                                                          NTU 20 – 40
                  45 - 60
           - 95%
                                                                        1
                       75\% - 2 - 3 ; -50\% 4 - 6
         (Al(OH)<sub>3</sub>, - )
                                              90%
                              0,2
                                                                             1
```

20

0,4


2

100 %; - 50% 1

```
. 25
                                                    , 128
                                         vik-dani@mail.ru
                                                                         [1–3].
                                      [4-10],
           [4, 5, 7]
                                            Fe-W
                   (
                                      [11].
1-2*10-4 2*10^{-2} ( * * )<sup>-1</sup> [11].
MF
                                                   0,42
                                     0,74
                                                              (
                                                                                                  ).
                                                                                                 -3)
                                                                                0.5
                                                   [4,12]
              Q ~ 1 · /
   . 1).
                                                                                            ,
.1).
                                                           .
Q, А·ч/л
                                                             (1)
                                                                            (2)
           . 1
                              Fe-W
                                                       0,76
```

FE-W

```
(
                        ).
                                . 1).
                                                           ,
([4]
0.74
             (
                                                                             ~ 50% [4].
                                                                Fe
                                                                       W
                                               . 2).
                                        30 -
                                        20 -
            . 2
                                                         (1)
0,76
                                                                               (2)
                                                                     Fe(III)
Fe(III)
             Fe (II)
                Fe(III)
                                                                                             Fe(II).
                                                                                                       50%
                                           .3).
```


[1] Eliaz N., Gileadi N. Modern Aspects of Electrochemistry. 2008. V. 42, P. 191-301

[2] Tsyntsaru N., Cesiulis H., Donten M., Sort J., Pellicer E., Podlaha-Murphy E. J. Surf. Eng. Appl. Electrochem. 2012. V. 48 (6). P. 491-520.

[3] Cesiulis H., Tsyntsaru N., Podlaha E., Deyang Li, Sort J. Current Nanoscience.2018. V. 14. P. 1-16.

[5] Ishida K., Morikawa T., Miyake M., Hirato T. J Surf Finish Soc Japan. 2016. Volume 67. Issue 9.P. 489-493.

[7] Danil'chuk V.V., Shulman A.I., Gotelyak A.V., Yushchenko S.P., Kovalenko K.V., Dikusar A.I. Russ. J. Appl. Chem. 2020. V. 93 (3). P. 372-377.

[8] Belevskii S.S., BobanovaZh.I., Buravets V.A., Gotelyak A. V., Danil'chuk V. V., Silkin S. A., Dikusar A. I. Electrodeposition of Co–W Coatings from Boron Gluconate Electrolyte with A Soluble Tungsten Anode // Russ. J. Appl. Chem. 2016. V. 89 (9). P. 1427-1433.

[9] Belevskii S.S., Gotelyak A.V., Silkin S.A., Dikusar A.I. Surf. Eng. Appl. Electrochem.2019. V. 55 (1), P. 46-52.

[10] 483 F1 "
(Co-W) " 28.11.2017 .

[12] Belevskii S.S., Gotelyak A.V., Yushchenko S.P., Dikusar A.I. Surf. Eng. Appl. Electrochem. 2019. V. 55 (2). P. 119-129.

```
terrakott37@mail.ru
                                                    [1,2].
         ,
[3],
  2,2-
               -1-
                                              )(DPPH)
            )
                                                   DPPH
DPPH
            -30SM,
                            Elins ( .
                                                   ).
                                                   (515
                                                            )
                                                          7.4.
                                                  (24).
```

- 1. H.L.Persson, A.L. Svensson, U.T. Brunk. // Redox. Rep. 2001. V. 6. P. 327
- 2. X. Li et al. // Free Radic. Biol. Med., 2008. V. 44. P. 1465
- 3. E.S. Dolinina, E.Yu. Akimsheva, E.V. Parfenyuk//J. Mater. Res.. 2021. V. 36. P.499

19-73-00040

```
-5,10,15,20-
                                                                                          (m-
                           2
                 3
                                       druzeva00@mail.ru, lutovac@mail.ru
                                                                                     [1]
                                                                                    -H_2T(m-NH_2Ph)P).
      -2H-5,10,15,20-
                                      (m-
                                  ITO
                                     - 1.5
                                                 + 2
                                                                                                                            )
                                                   5, 10, 20, 50, 100
                                                                              200
                                                                                       [1]
                            -H_2T(m-NH_2Ph)P
50
        / (
                 1 ).
                                                                 h/Q, нм/мКл<sup>-1</sup>
            1,0 -
                                                                                              50 мВ/с
                                                                     2
                                                                                                     100 мВ/с
            0,5
            0,0
        , MA
                                                                                      20 мВ/с
            -0,5
                                                 5 мВ/с
                                                 10 мВ/с
                                                 20 мВ/с
                                                                                                            200 мВ/с
           -1,0
                                                 50 мВ/с
100 мВ/с
                                                                               10 мВ/с
                                                 200 мВ/с
                                     Ó
                                   E, B
                .1.
                                                              H_2T(m-NH_2Ph)P
                                                                                           ( )
                                            ( )
```

1. Kuzmin S.M., Chulovskaya S.A., Koifman O.I., Parfenyuk V.I. // Electrochemistry Communications 83 (2017) 28–32

1 2 t.zakharchenko@chph.ras.ru . 90% N_2 H_2 [1]. 10% Li [2], Na [3], Al [4]. 59, 26, 51%, Li 1O₄ #4412 (SIGRACET), TGP-H-90 (Toray) -MnO₂, $Na-N_2$ [3] 1. Qing G. et al.// Chem Rev. 2020. . 120. 12. . 5437–5516. 2. Ma J.-L. et al. // Chem. 2017. . 2. 4. . 525–532. 3. Guo Y. et al. // Energ Environ Sci. 2020. . 13. 9. . 2888–2895. 4. Ge B. et al. // Energy Storage Mater. 2019. . 23. . 733–740.

-3153.2021.1.3)

```
-
```

-

. $1 \qquad \text{LiPF}_6$.

. -

() , , . . .

. ()

. 1. N, N- (N, N-).

 $(10^{-7} - 10^{-5} \cdot 1^{-1}).$, (2.0).

, (2.0) LiFePO $_4$ CR 2032 Li/Li $^+$

°C. 2.0 – 4.0 60

1. Long L. et al. // J. Mater. Chem. A. 2016. Vol. 4, 26. P. 10038–10039.

- 2. Zhao L. et al. // J. Memb. Sci. 2020. Vol. 593 P. 117428.
- 3. Porcarelli L. et al. // Eur. Polym. J. 2018. Vol. 107 P. 218–228.

(20-53-56069).

10,15,

10,15,20- -5-(4-

mihan16@bk.ru

)-2,3,7,8,12,13,17,18-, NO₂-(.1).

I,E- (.2) . 4 .2

I,

I,mA -4 -2 Me Μeۣ 0 $(NO_2)H$ 2 Мe $(NO_2)H_{Me}$ 0.5 0.0 -0.5 -1.0 Μeۣ .2 -.1 -I-E-. Ar.

. (+0.5...-1.5)

 O_2 . , , , (3.1). , O_2 . , , (3.1). , O_2 . , O_3 .

- [1]. Ke X., Kumar R., Sankar M., Kadish K.M. // Inorg. Chem. 2018. V. 57. P. 1490-1503.
- [2]. Berezina N.M., Klueva M.E., Bazanov M.I. // Macroheterocycles. 2017. V. 10(3). . 308-313.

bazanov@isuct.ru

) ()

NO₂ Me

Me (NO₂)HMe

NO₂ Me

(NO₂)H

I,E-

[1-2],

NO₂-

 O_2 . 2-

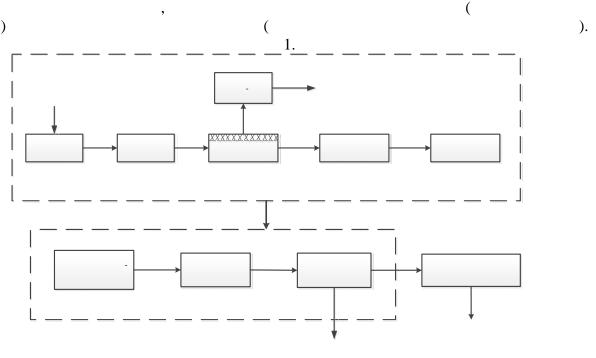
- 10,15,20--5-(4-

)-2,3,7,8,12,13,17,18-

3.1. 2-, 4-

[1]. Ke X., Kumar R., Sankar M., Kadish K.M. // Inorg. Chem. 2018. V. 57. P. 1490-1503.

[2]. Berezina N.M., Klueva M.E., Bazanov M.I. // Macroheterocycles. 2017. V. 10(3). . 308-313.


- · · · · · , , , ,

artkoles@list.ru ,

,

- ().

.

9.314
90-95%

, 95% , 9.314 (1 .),

•

.

rmanzhos@icp.ac.ru

.

[1,2]. , ,

[3].

(). Pt-C, ~3.4 ~2.0 ,

• ,

, , Pt- .

-.

•

 1.
 ..,
 ..,
 ..//
 .2016. .52. .3.

 2.
 ..,
 ..,
 ..//
 .2017. .53. .

1529. 3. . ., . ., . .// .2019. .55. 7. .854.

, - 19-119061890019-5

korablewa.sveta@mail.ru) (45 15 11 10% 3% 850° 30±2° 5 30 5%-1 45 2 5 30 60 100 1000 HV 30 150 . 1). (30 45, 1,3 3,5 0,75-18 16 Коэффициент трения 0,72 14 Δm , MI 0,69 12 10 0,66 8 0,63 6 котрольный образец 0,60 5 10 20 5 10 20 30 *t*, мин . 1. 45 10 , 1,555 / ,

> 5% 1 2 30

1

18-79-10094-)

```
Mn_{1.5}Co_{1.5}O_4
                                             , valerka-kochergin@yandex.ru
           2
                                                           )
                                                            Pt
                                                                                                    [1],
                                                                       ),
                                      N,
                     Mn, Co, Fe, Ni.
                                                                                                      - FLGS-
N/Mn_{1.5}Co_{1.5}O_4.
                        1M \text{ NaNO}_3 + 0.005M \text{ MnSO}_4 + 0.005M \text{ CoSO}_4 + 0.01M
+300
          and -150
                                                                                            [2].
                                                                                                   Pt/C.
                FLGS-N/Mn_{1.5}Co_{1.5}O_4
```

- 1. Nie Y., Li L., Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction //Chemical Society Reviews, 2015, Vol. 44, no. 8, P. 2168-2201.
- 2. Krivenko A.G., Manzhos R.A., Kotkin A.S., Kochergin V.K., Piven N.P., Manzhos A.P., Production of few-layer graphene structures in different modes of electrochemical exfoliation of graphite by voltage pulses // Instrument. Science Technol., 2019, vol. 47, no. 5, P. 535–544.

(19-03-00310).

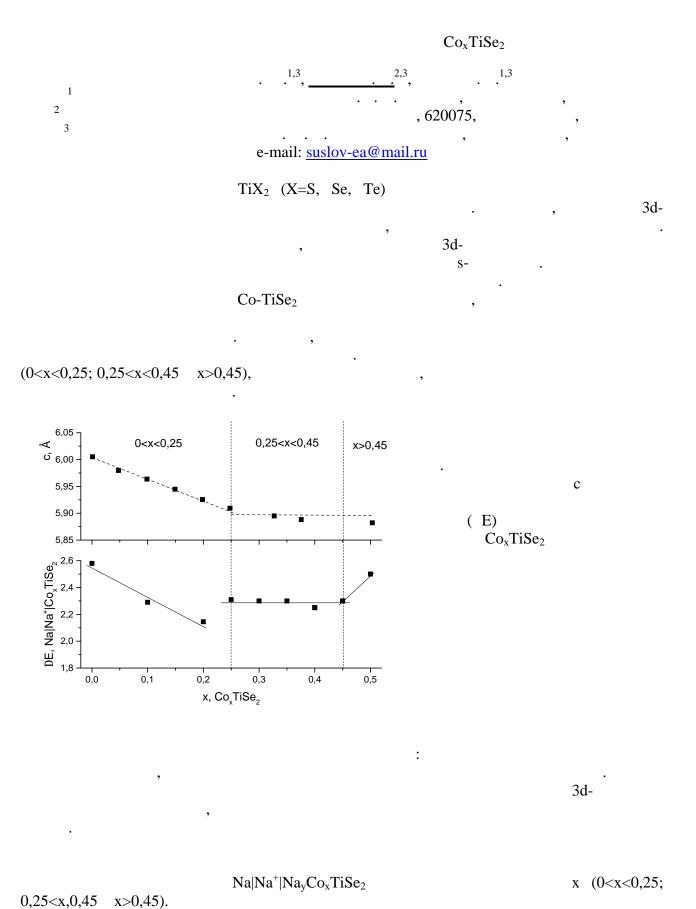
```
2
                                            rmanzhos@icp.ac.ru
                                                  )
             (~3.2
                                                  ),
           ( ).
                                                                                                          ~3.4
         ~2.0
                                            ~10 <sup>2</sup>)
-150 300
                                                                                 5
                       -280
                                                                                           10
                                             Na_2SO_4 [1] -
          ~0.5
                                                               0.5\ M\ H_2SO_4 \\ \left[Ru(NH_3)_6\right]^{2+/3+}
                                                                                                             20
                           k^0 = 0.01-0.02
    [1] [Fe(CN)<sub>6</sub>]<sup>4-/3</sup>.
                                                                     \boldsymbol{k}^0
                                                                             0.002
                                                                                                        0.005 /
1.
                                                          . .//
                                                                                  . 2019. . 55. 7. . 854.
                                                                                          - 19-119061890019-5
```

nkydo@mail.ru [1]. [2, 3], Al_2O_3 , 08 08 503-81), 2637-187-44493179-2014) 5:1) (2 / 2 5)2 / 100:1. ~9. 10-140 500° (Solartron SI 1260A impedance analyzer) 3.5 %-ZPlot ZView 2. NaCl /SiO₂/ 1.B.E. Yoldas. Transparent activated nonparticulate alumna and method of preparing same. US Patent No.: 3,944,658. Mar. 16, 1976. 2. . . . //

, 18-43-370030_ _

. //

3. . .


. 2020. . 22. 1. .39-47.

```
1-
                                                                                -1-
   2
                                        kno@isc-ras.ru
                                                      (BMPyrrDCA, Aldrich, > 97 %)
   (
                                                 (BMPyrrNTf<sub>2</sub>, Merck, > 98 %),
                             (SiO<sub>2</sub>,
                                                                 79
                                                                     ).
                                            BMPyrrDCA BMPyrrNTf<sub>2</sub>
                                                                                80°
                                                                                         -30°
                       4.75 1.30 / ; 0.094 0.007 / .
BMPyrrNTf_2
                         BMPyrrDCA (0.94 0.8
                                                         BMPyrrNTf<sub>2</sub>
                                                        . %)
                                          1.9
                                                  6.1
                                                                                   3
                                                                                          . %.
                                          4
                                                  . %
                     80^{\circ} .
                                                       BMPyrrNTf<sub>2</sub>,
                                                        BMPyrrDCA
                                                   8
                                                          . %.
                                                                                           7.5
                                                                              1.6 %
    . % SiO<sub>2</sub> BMPyrrDCA
                                 16.5 %
                                                              1-
                                                        )
                                                                       -1-
```

01201260481.

```
1-
                                                                                                          -3-
                                                kno@isc-ras.ru
                   .)
                                                 (
                                                                                         -3-
(BMIm , Aldrich, 95%,
                                                                 .%),
                                                       2.3
                               (Cel, powder, ~ 20 , CAS: 9004-34-6),
2
       .%;
                                                                    (Halloysite nanoclay, Al<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>×2
H<sub>2</sub>O, CAS: 685445).
                                                                                           80^{\circ} .
                                                                              24
                                                                                                         +80 ° .
                                                                                                -40
```

18-29-12012

20-03-00275

```
2
                                                                                       , 620075,
         3
                                         e-mail: cuznecova89634485295@mail.ru
                                                                                                                  ResPES, ARPES
                                                                                                         M_yMe_{1-y}X_2 (
                                                                                                                                M, Me -
                , X -
3d-
                                                                                                                TiX_2
                                                                                                                                        3d-
                                         ).
                                                                                                                            M_xMe_{1-x}X_2,
                           [1]
                                                                                                           M_yTi_{1-y}Se_2(M=Cr,V)
                                                               Li|Li^+|M_yTi_{1-y}Se_2.
                                           TiSe<sub>2</sub>,
                                                                          Cr_{0,04}Ti_{0,96}Se_2
                                                 y < 0.04
                                                 y>0,04
                                                                                                              TiSe<sub>2</sub>.
                   0.4 \qquad 0.6
y \text{ in V}_y \text{Ti}_{1-y} \text{Se}_2
     .1.
                                                                                                          Cr_{0,04}Ti_{0,96}Se_2
Li|Li^+|M_yTi_{1-y}Se_2|
                              Li|Li^+|V_yTi_{1-y}Se_2
                                                                                                                        .1,
                                                                                                                                        ).
                                                                                           0,3-0,5
                       TiSe<sub>2</sub>,
                                                                                                                            у.
                             Zr_yTi_{1-y}S_2 (y=0.1,0.2).
                                                                                                                                            )
```

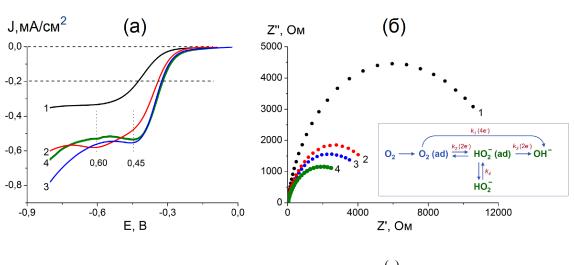
1 Brezhestovskii M. S., Physics of the Solid State 57, 2078 (2015).

20-03-00275 19-33-60031

kuznetsova.alex.91@gmail.com

1 (0,05) 2 (0,06), : [2], . . ,

(, 0,06), .


, 40 + 105 ° ,

450-485 .

, [1].

, $Mn- Fe- \\ . \\ Mn(III)Cl-5,10,15,20- \\ Fe(III)Cl-5,10,15,20- \\ (4-) - (Fe-poph) \\ Fe-poph), \\ [2].$

,

. 1 $1 \qquad \qquad (\) \\ 1 \qquad \qquad (\) : \qquad \qquad (1) \\ \text{Fe-poph (2), Mn-poph (3), Mn-poph } \qquad \text{Fe-poph (4)}.$

 k_1, k_2, k_3, k_4 (. 1).

Fe-poph < Mn-poph Fe-poph

- 2. Kim T-S., Kim J., Song H.C. et al // ACS Catal. 2020, 10, 10459-10467.
- 3. Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. // Electrochim. Acta. 2020, 342, 136064.

```
2
    3
                                               smk@isc-ras.ru
         [1].
                         Mn(III)Cl-5,10,15,20-
                                                            (4-
                                                                                             - (Mn-poph)
Fe(III)Cl-5,10,15,20-
                                  (4-
                                                                       (Fe-poph), (Mn-poph
                                                                                                      Fe-poph)
                                                    )
             [2,3]
                                               (
                                                    . 1)
                                                     Fe
                                                         Mn.
                     (a)
                                                      (ნ)
                                                                                         (B)
                                                               700
                                                                                                 700
                                                        600
                                                                                           600
                                                                                                         800
                     600
                   \lambda, HM
                                                      \lambda, HM
                                                                                        \lambda, HM
      . 1.
                                                                 ( )
                                                       / ( )
                                          / ( ) 100
                                                                         Mn-poph (1), Fe-poph (2),
                                                       Mn-poph Fe-poph (3).
                       I
                           _d\!/I_{B2}
                              Mn-
                                    Fe-
```

4. Kim T-S., Kim J., Song H.C. et al // ACS Catal. 2020, 10, 10459-10467.

Mn-poph

5. Kuzmin S.M., Chulovskaya S.A., Koifman O.I., Parfenyuk V.I. // Electrochemistry Communications. 2017, 83, 28–32.

Fe-poph

6. Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. // Electrochim. Acta. 2018, 292, 256-267.

² Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia o.levin@spbu.ru NOx NOx NOx NOx [1], NOx NaNO₂), 1. Gerken, J.B., S.S. Stahl // ACS Cent Sci. 2015. V. 1. 5. P. 234.

48

«

20-33-51007.

IN SITU

```
Leontyev@elch.chem.msu.ru
                                                                                          (
                                                                                                  ).
                                                                                                                                            ).
                   10^2
                              10^5
                                                                                      10^2
                                                                            1
                                                                                       (in situ)
                                                                                                                                          (ex
situ),
                                                                                      С<sup>'</sup>
                                    (R)
                                                                  (C).
                                                                                                              100
                                                                                                                              200
                                                                                                                                             300
                                                                                        / my cm<sub>-5</sub>
2,4
2,2
2,0
1,8
1,6
1,4
1,2
                                                                                                                 maximum of the aluminium
                             in situ
                                                                                                                  electroactive surface area
      . 1).
                                                                                                        maximum of the
                                                                                                        barrier layer thickness
                                                                                                                              1st anodizing
                                                                                        610
590
570
                                                                                                                           2<sup>nd</sup> anodizing
                                                                                            570
                                                                                                              100
                                                                                                                              200
                                                                                                                                             300
                                                                                                                   Time / s
                                                                                             1.
                                                                                                                       (
                                                                                                                     ),
                                                                                                                               0,3 M H<sub>2</sub>SO<sub>4</sub>
                                                                                                         10 V.
                                               j(t)
                                                          C(t)
                                                                                                                               M 25
                                                       18-29-11097
                                                                                      20-33-90277).
```

```
organik072@gmail.com
                                                    ( ).
                  ( u/Mo/Cu)
                                                  -40 ( u/M -40/Cu)
                                                                                    )
                                             Cu/Mo/Cu Cu/
                                                               -40/Cu
                                 10-20
                                                          -40)
                                                                            Cu/Mo/Cu
Cu/
      -40/Cu,
                                                                800 ^{\circ} .
                                                                    .5.9
                                                                               9.302-88;
                                                                         205-1
             85
                                              -65
        20.57.406-81;
                                                                                  207-2
                                  98%
                                                        40 ,
              20.57.406-81.
```

```
20
                                                                           )
                                 shibaev_boris@mail.ru
                               20%),
            20;
                                                       98%
                                                                              40
                   207-2
                                         20.57.406-81
                                                                            .5.9
9.302-88.
                                                      12 18 10
      10
                 19904-90,
                                                                        5582-75,
                 1 859-2014,
                                                                        931-90,
                                                           -59-1
      29
                 14080-78
                                                      48-19-472-93.
        1, 3
3
                                                            1 / \frac{2}{1}
                6
                                                                50%
           3 A/ <sup>2</sup>
                                                          \pm 1
                                                                     20%
                                        9-12%,
                                                                       [1].
       c
      1.
                                  158-5021
```

, 1975. – .60.

```
2
                                                  rmanzhos@icp.ac.ru
                                                                     ),
                                                             (
                                                                                                                  (N, P, S
B),
                                                                                    ( )
                                                                                                     [1].
                                : 1 M Na<sub>2</sub>SO<sub>4</sub>
                                                                    0.3 \text{ M Na}_2\text{SO}_4 + 0.02 \text{ M CoSO}_4
                                                                                                                           II.
                                                  300
                                           ó
                                                                                                                          II –
                                                         I
                                                              II
                          (Co_xO_y/
                                           ),
                                                                                                               \dot{\text{Co}_{x}\text{O}_{y}}/
                                 Co<sub>x</sub>O<sub>y</sub>/
                                                                    77.9
                                                                                20.5
                                                                                          .%
                                                                                                    70.4
                                                                                                                26.0
                                                                                                                          .%,
                                        C1 s
                                              (
                                                                                                                    ). Co 2p
                                                    Co<sub>x</sub>O<sub>y</sub>/
                                                                                                                       EDX-
                                          Co (II)
                                                      (III),
                                          40-45
                                                         . %.
Co_xO_y
                                               2.4 - 2.5
                                                              ~3.9
         1. Krivenko A.G., Manzhos R.A., Kotkin A.S., Kochergin V.K., Piven N.P., Manzhos A.P.
// Instrument. Science Technol. 2019.
```

Naymov993@gmail.com 20 20 15 11 10% 10% 900° 30±2° 5 30 20 100 1,0 0,6 60 100 300 980 HV 900° 30 . 1). . 2), (- 5 мин - 10 мин - 20 мин 187 1000 16 900 30 мин 800 Δm , MF **≧** 700 12 600 10-500 -8 Контрольный образец 400 + 0 200 400 100 300 5 10 20 30 h, мкм t, мин . 1. . 2. 20 10 , 1,555 / , 20 18-

53

79-10094-)

300 $300 / ^{2}$. $340 / ^{2}$, / ³: Cu - 53-55; $H_2SO_4 - 160-170$; Ni -20-24, Cl- -0,050. , /: 80-110;) - 65-80; 50-60 ⁰ 24 - 50-60 / . 24

```
.1,2
   2
                                                                                           ({\rm O_2}^{\bullet-})
                                                                                                         Li^+
                                                                                                                                             (Li_2O_2)
                                                                                                                                                      Li-O<sub>2</sub>
                                                                           )
                                                                                                                                                          Li<sup>+</sup>
                        0.25
                                                                                                                                                      ( ),
                                        LiClO<sub>4</sub>
                                                                                                            ).
                                                                             .1.
                                                                                                                                            Li<sub>2</sub>O<sub>2</sub> [1].
                                                                                  3
O_2(Q,)
                                      Li_2O_2(Q_1)
                                    (Q),
                                                              I,
                                                                                                                                                 1)
                                                                                                                            2.27-2.30
                                                                                                                                                  (Li/Li^{+}),
                                                                                                                                                        .1),
                                                                                                                                                      Li_2O_2 \\
                                                                     -0.2
                                                          LiClO<sub>4</sub>: ) –
                                                                                                   O<sub>2</sub>•-
Li<sup>+</sup>
        .1.
): 1100 - )1, 1500 - )2, );. = 100
                                                   0.25
                                                   / .
                                                                                                                                                    O_2
                                                                                                                                                    [1].
                                                    Q ,,
                                                                  Q
                                                                                     Q
 LiClO<sub>4</sub>
                   , /
                     1100
                                       100
                                                       3.2
                                                                     1.28
                                                                                     0.96
                                                                                                                             .1 , I /N).
                                                                                                                      (
                     1500
                                                       4.1
                                                                     2.42
                                                                                     1.72
                                                               Q , ,
                                            \boldsymbol{Q} , \boldsymbol{Q}
                                                                            Li_2O_2,
                                                                                                                                                    (Q , +
Q )/Q , ,
Li_2O_2.
                                                                             Li<sup>+</sup>
                                                                                                                                                      Li_2O_2
                                                                                                                                               Li_2O_2 \\
```

1. Walter Torres et al.// Journal of The ECS, vol. 161, 14, (2014), 2204–2209.

; , ,

. 1).

1 ..., ..., ..., ..., ..., ...,

olvp2808@rambler.ru

,

, , , $I = \begin{bmatrix} 2,4...4,0 & / & ^3, & & & I \\ I+II & & & & & & \end{bmatrix}$

50

. 2/9/2010 HV mag WD det vac mode — 10 μm — 2.53 05 PM 30.00 kV 5 000 x 9.7 mm LFD Low vacuum — (*5000)

 $50^{-2}/$, >-1,5.

 $(720 \times /)$

· ,

[1].

Serbinovsky M.Yu., Popova O.V., Shkurakova O.E. // Journal of Friction and Wear. 2019. . 40.
 . 309.

--

airman-84@yandex.ru

· -,

• -

, ,

, [1], , , 10 20

, 14 · , 7 %.

-,

 $CuCrSe_2$ 1 2 Mithanya0403@gmail.com $CuCrSe_2$ Cu CuCrSe₂ Cu CuCrSe₂ $CuCrSe_2$ 10⁻⁵ 1000 . $CuCrSe_2$ P-2X». $CuCrSe_2$ 0.95. CuCr₂Se₄. 5 CuCrSe₂, %. - 18-118020290104-2. . . »,

58

21-11/

-

```
ekaterina.sokova44@gmail.com
                                                                          45
                                                                             11
10
                            45
                                                15
                                                                                                         750°
                    5%
                                                        5%
80
1 10
                                                                                            3%
                                                    5%
                                           300 B
                                                                                       1,0 /
                                                       45
                                   2
                                                                                                          (R_a = 2,0\pm0,3)
                                                                                                                                      )
   3%-
                                                                                                              . 1)
                                                                     5%-
                                                                                                                      . 2).
                                                                                                                                     1000
                        1 4
HV)
                                                                ),
                                                                                                       ] R<sub>a</sub> / КЭПА
] R<sub>a</sub> / ЭПП / (NH<sub>4</sub>) <sub>2</sub>SO<sub>4</sub>
                                         R_a/KЭПА
                                                                          3,0
           14-
                                          "
, / ЭПП / NH ,Cl
                                                                          2,5
           12
           10
                                                                          2,0
                                                                      2,0
1,5
\approx 1,0
       R_a, mkm
            8
            6
             4
                                                                          0,5
                                                                                                4 6
t, мин
                                                                                                                      10
                                               8
                                                      10
                                                                                          2
                                                                                                                8
                                                                                  1
                                        6
                                 t, мин.
                                                                                  . 2.
            . 1.
    3%-
                                                                         5%-
```

79-10094-) (18-

```
2
     3
             4
                                      sotnya777@mail.ru
(
     )
                                                                                      Al(100).
                                                                          Al(111)
                                                              107,4 \pm 0,5
                                             (
                                                   )
NVision 40.
                  0,3
                                                     41
                                                                                           ( )
                                     Al(111)
                                                                              ~ 150
                                        ( )
<112> - 88%
      <110>
                         91%,
                                                                                   ~ 100
                                                               Al(111)
Al(100)
                      = 88%
4°
                        ~ 95%
                       Al(100) -
                                                                             87%.
                               Al(100)
                                                           (
                                                                      19-73-10176).
```

```
sotnya777@mail.ru
             ).
                                                                                                               ).
                                       0,3
                                                 H_2C_2O_4\\
                                                                                     0,3
                                                                                               H_2SO_4
                                                                   40
                                                                                                                25
                                                                                                            04-
               \begin{split} E_d = -1, 0 \quad . \\ E_{imp} = -1, 2 \end{split}
                                                                 0,1 .
                                                                                                      1,25
              400
NaOH
                                                                   (
                                                                           ),
                                                                                      Si/SiO<sub>x</sub>,
                                                                                               30
                                                                                                      60
    20
                                                               Au/
                                                                                               60
                                        [200],
                                                                                                                   60-
                                                                                   700
                                                                                          ,
100
                               30
                                                                                       520
                60
                                                                                                   180
                                                 3
                                                        36
                                                                         T = 1,2 ). 30- Au
                               1,7
                                       5 K.
                                                                                                  300
                                                      14
                                                                    1,6\cdot10^{6}
                                                                                            18-73-10151
```

19-02-00981,

18-29-11097 .

```
sstahanova@muctr.ru
                                                             ( )
                         ( ),
3000
                                                                                       [1],
            [2],
                                                                    1,1-
(DMP⋅ FB)
                                                 12
                                                    I),
                                                                         20-25 % (
                                                                                          II)
                     40 %
                                         . 1).
            1 -
                                          DMP· FB
                                               , %
                           2/
        I
                       1600-1700
                                             100
                                                               5,1-6,5
                                                                                   85-90
                       1200-1300
                                                               9,1-9,2
                                                                                  110-112
       II
                                            75-80
                       1500-1900
                                                               3,0-5,9
       III
                                             < 60
                                                                                  75-105
                                      <sup>2</sup>/ ,
                          1200-1300
```

1. Simon P., Gogotsi Y. // Nature Materials. 2008. V. 7. P. 845-854

```
-1,
132432,
                                                                         , 1, . . 3,
                          , 119992,
2
                                             , 1,
slianan@mail.ru
          [7]
               ( 7)
                                                                                                        Hg-
                                                            ( )
                                                                                                   +),
            <sub>1/2</sub>=-1.12 ,
                                                             7 (Co + Ì
                                                                                 7)
                                                                                            ,
Hg-
                                                                                    7
                                                 7
                                                                        7
Hg-
                              Co <sup>+</sup>Ì
                                           7
Hg-
                                                        Hg-
                                                                                  [7] (7 \times 10^9 - 1)
1 \times 10^{8} <sup>-1</sup>,
                           ).
```

. .

radvam62@mail.ru

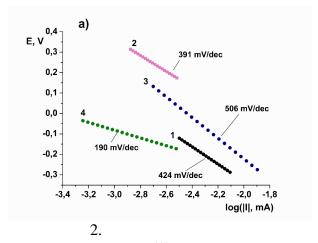
```
,
).
                                                                                                (
                                                                                              15 / .
                                        40°
                                                           60°
                                          50^{0}
                                                                                      «Lilon» [1].
0...+40°
                                                       «LiPO»
20...+40^{\circ} .
                               . .),
                                 [2].
4000 )
             (
                                                                                                        :
                              (LiFeS_2)
                                                                           (LiMnO_2).
                            10
                                                                           Supercam S350
                                                                                           40° .
                                                                             (
                                      5
                                 )
                                                                                      );
                                                                                                   5
                                                                            10
(
         12
                                           );
                                               (0,5-0,7
                                                                                            . 000000
                                                 5
                                                                                        5
                      », 2014. – . 157.
       2.
                       . . //
Supercam S350.
                                                          5 –
                                                                                    », 2018. – . 128.
```

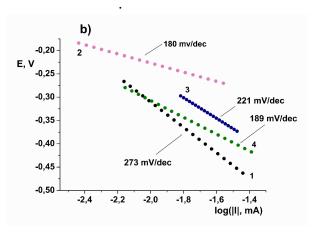
2 tazina@inbox.ru) 3-4 1. 2. .302 -330 ",1975. – 568 . .: , 1965.

```
1,2
    2
                                                       mvt@isc-ras.ru
                                                                                                                               ),
                                                                                                                          [1-2].
                                  [3].
                      )
(
                                                                                                    [5]
                                                      [4]
                          [6].
                                 Fe-
                                            Mn-
                                                                    5,10,15,20-
                                                                                               (3-
                                                                          20
(0.1
           OH).
                                            j, mA/cm<sup>2</sup>
0,2  
                                            0,0
                                            -0,2
                                            -0,4
                                            -0,6
                                            -0,8
                                            -1,0
                                                         -0,8
                                                                -0,4
                                                                       0,0
                 1.
                                                                (
                                                                           Fe(III)ClT(3-NH<sub>2</sub>Ph)P (2), Mn(III)ClT(3-
                      (1)
```

 $NH_2Ph)P\ (3),\ Mn(III)ClT(3-NH_2Ph)P+Fe(III)ClT(3-NH_2Ph)P\ (4).$

(. 1).


: $-\text{FeClT}(3-\text{NH}_2\text{Ph})\text{P} < \text{InClT}(3-\text{NH}_2\text{Ph})\text{P} = \text{FeClT}(3-\text{NH}_2\text{Ph})\text{P} + \text{MnClT}(3-\text{NH}_2\text{Ph})\text{P}$

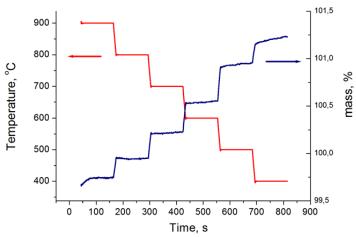

:

. 2).

 $MnClT(3-NH_2Ph)P < -FeClT(3-NH_2Ph)P + MnClT(3-NH_2Ph)P.$

,

 $(1) : Fe(III)ClT(3-NH_2Ph)P (2), \\ Mn(III)ClT(3-NH_2Ph)P (3), Mn(III)ClT(3-NH_2Ph)P + Fe(III)ClT(3-NH_2Ph)P (4) \\ 0.1 OH () () .$


- 1. Ding Ch.-H., Tang J.-J., Chen Sh., Liu Zh-Q., Li N. // Journal of Nanoscience and Nanotechnology, 2017. V. 17. N. 2. P. 1438-1442.
- 2. Tesakova M.V., Noskov A.V., Parfenyuk V.I., Bazanov M.I., Berezina N.M. // Russian Journal of Physical Chemistry A. 2012. V. 86. N. 1. P. 9-13.
- 3. Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S. // Adv. Mater. 2010. V. 22. P. 3906–3924.
- 4. Do M.N., Berezina N.M., Bazanov M.I., Gyseinov S.S., Berezin M.B., Koifman O.I. // J. Porphyrins Phthalocyanines. 2016. V. 20. P. 615–623.
- 5. Wang L., Zhang Z., Li M., Li Q., Wang B., Wang S., Zhou H., Mao B. # Chem. Cat. Chem. 2020. V. 12. P. 2469 2477.
 - 6. Liu J.-H., Yang L.-M., Ganz E. // J. Mater. Chem. A. 2019. V.7. P. 11944-11952.

2 mvt@isc-ras.ru 5,10,15,20-(4'-(). 5,10,15,20-Mn-(3-Fe-

sgtitova@mail.ru

 $Y_{0.2}Nd_{0.2}Eu_{0.2}Sm_{0.2}Ho_{0.2}Ba_{2}Cu_{3}O_{y} \quad (\qquad \qquad R\text{-}123)$

NETZSCH Jupiter STA 449 F3 (. 1).

. 1 – R-123.

(1). -Shimadzu XRD-7000 (Cu-Ka),

CFS-9T-CVTI,

•

1. – R-123

	Dm, %	, y	(b-a)/(b+a)	T , K
400,	0	6.95	0.00668	83
400,	0.262	6.85	0.00659	74
500,	0.388	6.678	0.00724	61
600,	0.32	6.536	0.00598	47
700,	0.27	6.416	0.00482	43

Y-123.

-

N-

ulananton@mail.ru

 $\left\{Re_6Q_8\right\}^{2+}(Q=S$ Se), [1].

Re(III) μ_3 -Q.

[2]. N-

[3].

N-Se) = 4,4'-, 1,2-, 4-

; $L'' = Cl^-$, $Br^ CN^{-}$.

N-

1. Cordier S. et al. // J. Clust. Sci. 2015. . 26. . . 1. . . 53,

- 2. Pinkard A., Champsaur A. M., Roy X. // Acc. Chem. Res. 2018. T. 51. . 4. C. 919,
- 3. T. Yoshimura et al. // Inorg. Chem. 2011. T. 50. . 20. C. 9918.

20-33-70112.

```
(N-
1
                           rezeda.fazleeva@iopc.ru
                   (
                                                            ).
Ag, Au, Pd, Pt Rh)
                                      (N-
                                                              , 40000 D)
                                                       ) (
          ( ) ( -1 = 5946 \pm 4819 , d = 147 \pm 38 ;
                                                                  -1 = ~
        d = 57 \pm 36
2500
                        [4,3-b][1,2,5]
                                                            (BIQOQ)
          [1,2:1.2]
                                           [3,4-f]
                             « »
            (MV^{2+})
                                                         Ag (11 \pm 3), Au
(78 \pm 27), Pd (4 \pm 1), Pt (34 \pm 14), Rh (33 \pm 20)
               BIQOQ Ag (28 \pm 8), Au (10 \pm 3), Pd (5 \pm 1), Rh (31 \pm 13),
                                               MV^{2+}. -
1.3 \pm 0.4
         )
    )
    ),
                                                            20-03-00007.
```

```
smk@isc-ras.ru
                                            [1].
                                                [2].
                                                      -5,10,15,20-(3-
                          Zn
                                                                        (ZnT(4-OHPh)P).
(ZnT(3-OHPh)P)
                            -5,10,15,20-(4-
                            . 1).
                               8
                                                                100
                               09
                                                 Ξ
                                 Ħ
                                                                09
                               4
                                                                9
                 0,
                               20
                                                              2,0
E
                            2,0
                                                                             -ZnT(3-OHPh)P()
             . 1.
                                    -ZnT(4-OHPh)P()
                                                              ITO.
                                                                -ZnT(3-OHPh)P
                                                                                          -ZnT(4-
OHPh)P
1. Savenije T.J., Koehorst R.B.M., Schaafsma T.J. // J. Phys. Chem. B. 1997. V. 101. P. 720.
2.
                                                              . //
             . 2019. . 27.
                             4. . 12.
                                                        » (
                                                                               ).
```

Ni-Cr Co-Cr

dddyyyaq@gmail.com , IPC – pro,). , Ni-Cr Co-Cr Co-Cr %. Ni-Cr 4,8 . %. 60 %. 10-15

```
1
     2
                                       marchekunova@mail.ru
                              (
                                                                   )
                                                                           [1].
LiAsF<sub>6</sub>
                                                                                               (e)
                                                                               (e=64,92; h=2,53
                            (h)
                                    298.15
                          (e=39,1; h=1,73
                                                             -2-
                                                                              (e=32,2; h=1,67
    × ), g-
                                               \times ), N-
    × ),
                       (e=35,9; h=0,341
                                              × ), N,N-
                                                                            (e=36,7; h=0,82
                                                                                                  × ),
                                                                    (e=7,58; h=0.46
                      (e=46,5; h=1,99
              (e=6,68; h=0,364
                                     ×)[2].
                                               [2],
                                                                               LiAsF_{6}\,-\,
                                                     [3]
                                                                                         0,7
                                                    < N, N-
                                          < N-
                                                     -2-
N-
                                                   < g-
         -2-
                LiAsF<sub>6</sub>
                                                                                 LiAsF_6
                                                           LiAsF<sub>6</sub>
                             [4].
                                                  , 2021, 57, 152-161.
2. Izutsu K. Electrochemistry in Nonaqueous Solutions. Weinheim: Wiley-VCH Verlag, 2002. 415 p.
3. Erdey-Gruz T. Transport Phenomena in Aqueous Solutions, Budapest: Akademiai Kiado, 1974. 420 p.
                                                                        ., 2015, 58, 112-115.
                          . . . . . . . .
```

ruslanfelix@yandex.ru

Sn-Co, Sn-Ni Sn-Zn. Sn^{2+} $-M^{2+}$ $-C_2O_4^{2-}$ $-NH_3$ $-F^ -Cl^ SO_4^{2-}$ (M = Co, Ni, Zn), NiSO₄·7H₂O 0 54 / , $CoSO_4$:7 H_2O – $20 / (NH_4)_2C_2O_4H_2O - 0$ $0 50 / , ZnSO_4 7H_2O - 0 120 / , SnSO_4 -$ 120 / , NiCl2×6H2O - 0 50 / , CoCl2×6H2O - 0 55 / , ZnCl2 - 0 70 / , / , KCl - 0 210 / .60°. 18 P-30J « ». MPS-3005L-3 Matrix (Solver 47 Pro (). Phenom Pro X (EDS) Tescan Vega 3 SBH

Sn-Co, Sn-Ni Sn-Zn

- , -

.

.

```
. . , aynkavcev@yandex.ru
                                                                                -1000
-1
                                                                       -7
             -76-
                                                                , (
                                                                      )[1].
                      3%
                                            .)
                        ).
                             [2].
                                                                                         -76
       1.
                                                                  , 2014. 301 .
                                                                  [..]. –
2016. – 268 .
```

```
(
                                          ),
                                                               , e-mail: abr-aleksey@yandex.ru
     6
                                                               6
                                                                                   [1].
                                                 : 5-10 / Ce(NO_3)_3 \cdot 6H_2O, 30-40
                                                                                          / H_2O_2, 0,5-1,5
                 =2-3,
                                              18-25°
                                                                                                10-15
                                       120 \text{-} 160^{\circ} ,
                                                                                                      CeO<sub>2</sub>,
Ce_2O_3,
                                     Al_2O_3.
                                                                (
                                                                                  0,5-1,5 / )
                                   CeO_2.
                                                     750
                         13,0
                                    13,8
                                                                             280-320
1. Abrashov A.A., Grigoryan N.S., Vagramyan T.A., Simonova M.A. et al. // International Journal
```

77

1. P. 132-144.

-2020-028»

of Corrosion and Scale Inhibition. 2021. V. 10.

«

ksyusha-orlova-98@mail.ru Zn-Ni, [1]. Zn-Ni [2]. 80-20-L15) Содержание инкеля в покрытин, % 18,00 1 Zn-Ni 2 16,00 Zn²⁺ 0,07-0,2; Ni²⁺ 0,03-0,06; 14,00 L15 0,2-0,8; pH 13-14, t 22 3 12,00 Ni²⁺/L15, 0,1. 10,00 1, 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 Плотность тока, А/дм² Рис. 1 Зависимость содержания никеля в покрытии от плотности тока при мольном отношении Ni2+/L15 0,1 и различных концентрациях ионов никеля в электролите (моль/л): 0,06 (1); 0,04 (2); 0,03 (3) Ni²⁺/L15 0,03 (12-14%).

1. S. Ghaziof, W. Gao // J. Alloys Compd. 2015. Vol. 622. P. 918.

(0,2-4)

2. A.M. Alfantazi, J. Page, U. Erb // J. Appl. Electrochem. 1996. Vol. 26. No 12. P. 1225.

ksyusha-orlova-98@mail.ru Zn-Ni [1]. [2]. /): Zn²⁺ (ZnO) 0,1-0,2; NaOH 2-4; Ni²⁺ (NiSO₄·7H₂O) 0,03-0,06; L10 200) 0,075-0,225; L15 (300). 22-25 pH 13-14, / , L10 0,075-0,15 0,2 / , L15 0,15-0,225 Zn-Ni c 12-15 %, 1, 0,2 5 / Ni^{2+}/Zn^{2+} 0,3 $Ni^{2+}/(L10+L15)$ 20 0,2. L10/L15 15 0,33 1. Содержание инкеля, % L15 10 $Ni^{2+}/(L10+L15)$ 0,2, 5 , L15 0,5 1,5 2,5 4,5 5 Катодная плотность тока, А/дм² 1. L10:L15 = 1:3 2. L10:L15 = 1:1 Рис. 1 Зависимость содержания никеля в покрытии от катодной 3 - 5 Zn-Ni, c 70 - 96 %.

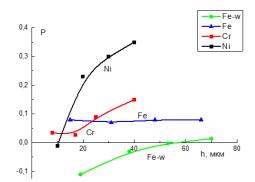
- $1.\ C.M.$ Praveen Kumar, T.V. Venkatesha, K. Vathsala, K.O. Nayana // J. Coat. Technol. Res. 2012. Vol. 9. No. 1. P. 71.
- 2. G. Sheela, M. Pushpavanam, S. Pushpavanam // Int. J. Hydrogen Energy. 2002. Vol. 27. No 6. P. 627.

N,N-

, shcherb@muctr.ru N,N-(DMP·TFB)) [1]. DMP·TFB DMP·TFB DMP·TFB k٠ DMP·TFB $_3$ (R -). DMP·TFB k Е_к, кДж/моль ■ 0,02 ▲ 0,05 1,5 • 0,1 0,5 25 35 45 55 100 DMP·TFB k () DMP·TFB () [2]). DMP·TFB k 1. Galimzyanov R. R., Stakhanova S. V., Krechetov I. S. at al. // Journal of Power Sources, 495 (2021) 229442.

. .,

, 45 (2009) 986.


2.

(, e-mail: abr-aleksey@yandex.ru (VI) Cr^{3+} Ni²⁺, $KCr(SO_4)_2 \cdot 12H_2O - 90 \ / \ , Ni(NO_3)_2 \cdot 5H_2O - 16 \ / \ , CH_3COOH - 40 \ / \ , HNO_3 - 20 \ / \ , NO_3 - 20 \$ 24-26 5-10 / 0,5-1 (pH=10-12) (ASTM B117) 72 76 .

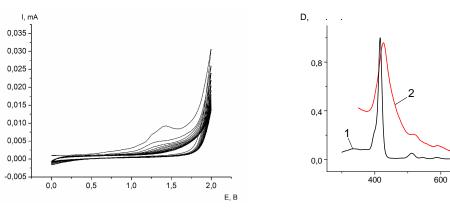
81

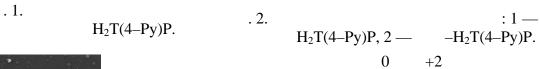
-2020-027»

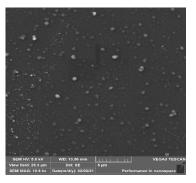
, 3 15 6 .

.

,


3- 15 6 Ni,


45 ng/Nm 5168,75 ng/Nm 800 0,0827 0,0415 2593,75 0,72 1600 0,0040 250 0,0073 456,25 0,50 2400 0,0006 37,5 0,0030 187,5 0,45


5,10,15,20- (4-) (H₂T(4-Py)P).

. Red/Ox-

, ITO- ,

. 3. H₂T(4–Py)P. 10 40 .

```
Ag(I),
                                                             Ag-Zn
                                 nesterovamarija18@gmail.com
                                                                Ag-Zn
                                    ( )
                                                                                         [1].
                                                      Ag,Zn-
                          Ag(I).
                         Ag-Zn (N_{Zn} 30 .%)
                                                              60-
                                                                                E (
                0.01 \text{ M HNO}_3 + 0.09 \text{ M KNO}_3 \text{ (pH 2.16)}
                                                                                              ).
                              [1],
        N_v,
                                             Ε
                                                                              ).
                                         0,1 KOH (pH 12,89)
                                                                                              Ag(I)
                 E ( )
                                                                                     = 470
                           F_0 = 1,64 \times 10^{14} / × <sup>2</sup>.
                                           ·10<sup>-5</sup>, -1
E,
                          N_v 10^4, .%
                                                       W,
                                                               N_{\rm D}^{-10^{-14}},
                 E_{CP},
                  0,42
                                            0,32
                                                        731
                                                                    4,01
                              17,1
                                                                                       Ag(I),
0,55
       Ag5Zn
                  0,52
                              22,0
                                            0,51
                                                        451
                                                                    10,5
                  0,62
                              65,3
                                            0,99
                                                        233
                                                                    39,3
                  0,41
                              3,45
                                            0,90
                                                        257
                                                                    29,4
                                                                                   Ag.Zn-
0,53
      Ag10Zn
                  0,51
                                            0,93
                                                        248
                                                                    31,6
                              6,40
                                                        221
                  0,61
                              7,99
                                            1,04
                                                                    40,0
                                                                    27,0
                  0,40
                              0,98
                                            0,90
                                                        255
0,51
      Ag15Zn
                  0,50
                              2,10
                                            1,09
                                                        212
                                                                    39,0
                  0,60
                                                        147
                              3,17
                                            1,57
                                                                    81,7
                  0,40
                                                        253
                              0,29
                                            0,91
                                                                    24,3
0,49
      Ag20Zn
                                                        208
                  0,50
                              0,39
                                            1,11
                                                                    36,1
                  0,60
                              0,93
                                            1,30
                                                        177
                                                                    50,0
                  0,40
                              0,09
                                            0,42
                                                        544
                                                                    4,61
0,47
      Ag30Zn
                  0,50
                              0,14
                                            0,43
                                                        532
                                                                    4,83
                                            0,79
                                                        291
                  0,60
                              0,35
                                                                    16.1
                  Ag(I).
                  [2],
      Ag(I) (
                 ).
                                                                                     W
                                  N_{\rm v}
                                                                             N_D
  1.
                                               ; , 2014. 288 .
, 2016. 296 .
  2.
```

E-mail: egorovavika1999@mail.ru

,
,
,
,
Met Gala,
,
,
Swarovski

,

-32 -34 tanya.ersh@yandex.ru . Sn(IV), Sn(II) -34 -32. -32 -34 6 -34 -32. , Ra 0,83 - 1,1 -32 - 0,57 -34 Ra 0,85 - 1,28 -32 - 0,71 -34

tanya.ersh@yandex.ru Ni-P = 4,5 -5,5); Nichem 2505A,Nichem 2505B Nichem 10. 9.302-88. 1,5 1,3 -3 (1693,5 (614 / ²) ®

5

nmiva@mail.ru Me/C (Me = Cu, Ni)in situ $+ Ni(OH)_2$ 400, 500 CuO 700 400, 500 700 Cu/ 1,0: 3,3; 1,0:2,6 1,0:2,0, (I) (Cu_2O) CuO Cu/C (700°C), (Cu^0) , 400 NiO. Ni/C (700°C) 1,5 30 - Pt- \cdot $Cu/C(400^{o}C) \ < \ Cu/C(900^{o}C) \ < \ Cu/C(700^{o}C).$ Cu-2-3,6 86%. Cu/C (700°C). 400 500 NiO

88

2,6

),

Ni/C (700°C),

77%.

. . «

« ", , konarev.niopik@gmail.com

[2].
« » (.)
274 354

, -17-20 - .

CN- $C^{2+} Co^{3+} C^{3+} C^{2+} c$

; ; ,

•

12-

Co³⁺ 2+ 3+ ,

, konarev.niopik@gmail.com », (5-15 %). 2- -4,8-10-15 % 15-20 % [1]. 18 10 4-89,0-92,0%, 60,0-66,0%. 4-179,5-180,0° . . .178,0-183,0°). 1,3--5-1,3 -5-13,5-14,5% 18 10 7,0-8,0 / 2 40,0-45,0° 80,0-83,0%, 60,0-64,5%, 9,6-9,8 · / . 2-(43 1). 18 10 10-15 65-70 ° 2-- 4-85,0-90,0% 94,0-95,0% 80,0-82,0 %. 2--4,8-7.0-8.4, 3 18 10 97,5 - 98,5 % 65,0 - 72,2 %- 10 - 15 / 2 50 - 70 °. 80-10-15 100 [1]. 1. . 2021. .57. 3. .171. . .//

, konarev.niopik@gmail.com **«** 5-(5-), -4-20-50° 10 5-5--4-5-). 5-5-: 5-5-8,2-9,2, 5-5-5-0,16 5-40,7- 65,9 % 5-77,4-83,0 %. 5,0 / 2 45-47° 5-41,2-59,0 % 12,7-18,7 %. 5-37,6 % 5-78,9 % 62,3 % 90,0 - 92,0 %. 5-[1]. 5-5--0,9 - -1,1 (. . .)

5-

-4-

. 2012. . 85. 10. . 1550.

1.

. .,

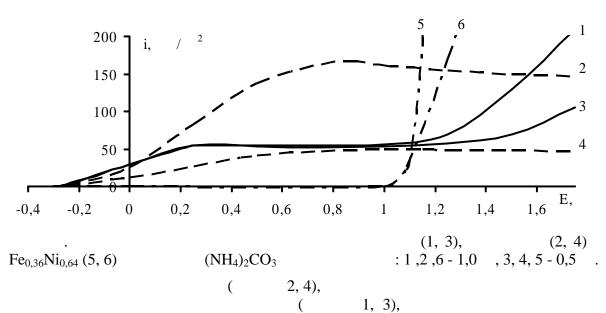
1 , konarev.niopik@gmail.com 2 », (), 300 450 , 1-0 10-11 / 2, 44 - 45 ° 91,4 92,2 %, 811 51,1 59,4 %. 80-100 , 1,1 1,2 · / , 3,9 4,7 · / . 2,45 6,54). 45 47°, -11 / 2 324, 1-0. 25 %-. / % , % , % 2,45 7,8 0.00020 92,0 52,0 1,12 7,57 4,70 12,1 0,00030 91,3 52,4 1,12 7,38 5,80 16,3 0.00012 94.0 56,7 1,06 7,54 6,54 19,9 0.00012 92,7 54,1 1,09 7,69

, 2,45, 6,54, 25%-7,8 19,9 . - ,

, 324

811.

```
<sup>3</sup>EKOL s.r.o.,
                                              vitkuzn1@mail.ru
                                                                                                Cr(III) -
                                                                                                 (VI),
«
                                                                                                  ,
(> 10
                                                                                                                )
         Cr(III)
      / ): Cr_2(SO_4)_3 - 0.5, HCOONa - 1.4.
                                                                                                  2.0 \pm 0.05
                          HCl.
                          K_2Cr_2O_7
                                                                                  0.12
                                          S = 10
22±2 °
                                        180
                                                                                             40-60
                               1.
                                                               Б)
                   1.
                                                                                                             40
                                                                                     . ) –
                                          ,
,
)-
                                                                   60
                                                                              288 (\times)/ ,
                                       \operatorname{Cr}^{+2}
Cr^{+3},
```


, , - 49, olyakolya@mail.ru

- -, [1-

5].

, , ,

 $(.\%: 78,8 \ W, \ 15,2 \ Ni, \ 6,0 \ Fe) \\ Fe_{0,36}Ni_{0,64} \ [4] \qquad (NH_4)_2CO_3 \\ (\qquad \qquad 1 \ /c, \ Pt \qquad , \\ Ag/AgCl \qquad). \qquad , \qquad \qquad 0,5 \\ 1,0 \qquad -$

,

075-00328-21-00.

^{1.} Kovalenko V., Kotoc V.// Eastern-European Journal of Enterprise Technologies. 2020. 12. vol.108. P.61-66.

^{2.} R.A. Latypov, E.V. Ageeva, G.R. Latypova// MATEC Web of Conferences.2019. 298(3):00125.

^{3.} Kalyan Kamal S.S., Vimala J. // Materials Today Communications. 2017. vol.11. P.174-178.

^{4.} Kuznetsova O.G., Levin A.M., Sevostyanov M.A.// Russian Metallurgy. 2021. 5. P.586-593.

^{5.} Kuznetsova O.G., Levin A.M., Sevostyanov M.A.// Russian Metallurgy. 2019. 5. P.507-510.

· · · · · , , , ,

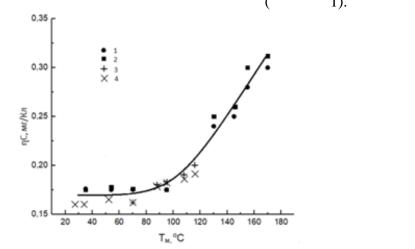
humanth@mail.ru

-

, [1].

[1].

· ,


,

, , , [2]

: 1. ,

2. s 2 (~0,18 /),

35 . 3.

1 18 10 (1,2) 35 (3,4) (1,3) (2,4)

2.

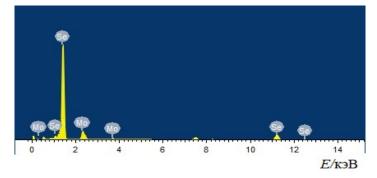
10,20
0,18
0,16
0,16
0,16
0,04
0,02
0,00
0,04
0,02
0,00
0,04
0,02
0,00
1, A/cM²

2020. 6. 24-33.

$MoSe_2$

[1–2].

, MoSe₂, (1,55)


, .

Mo.

 $MoSe_2$.

 $MoSe_2$, Na_2MoO_4 , H_2SeO_3

H₂SeO₃

Se₂, (): $0.18 \text{ Na}_2\text{MoO}_4\times2\text{H}_2\text{O} + 0.005$ $H_2\text{SeO}_3 + 0.007 \text{ C}_4\text{H}_6\text{O}_6; = 298$. $12.5 \text{ / }^2, 26$.

d-d

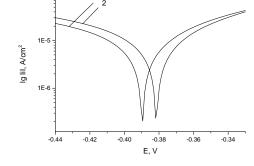
 Na_2MoO_4

 $MoSe_2 \qquad \qquad . \\ (\quad .) \qquad \qquad .$

- 1. Xia Y.P., Wang B., Zhang J.Q., Feng Y., Li B., Ren X.B., Tian H., Xu J.P., Ho W.K., Xu H., Liu C., Jin C.H., Xie M.H. // 2D Mater. 2018, 5, 041005.
- 2. Jolie W., Murray C., Weiß P.S., Hall J., Portner F., Atodiresei N., Krasheninnikov A.V., Busse C., Komsa H.-P., Rosch A., Michely T. // Phys. Rev. X, 2019, 9, 011055.

(Fe-W . Fe-W (/), 1) 50 $(0,5^{2}).$ (/): FeSO₄ – 0,2; – 0,4 6,9 -0,33;-0,17;80°, 20 NiCl₂·6H₂O (240 /) 60 . + HCl (80%) 30 -28 64 30 . NOVA 2.1.4.), MetrohmAutolab (

 $Ag/AgCl_{sat} \\ -0.7 \\ 1 \quad / \quad 10^{-3} \ N \qquad \qquad H_2SO_4 \quad HCl \\ \end{array}$


Polarization

1).

Rezistance ASTMG59 Standart.

, .

.1. Fe-W 0,5 2 , (1) (2)

Fe-W 1 vioricamirzac@mail.ru Fe-W Fe-W /): FeSO₄ - 0,2; -0.33; Na₂WO₄·2H₂O -0.4, -0,17; 80° , 0,1, 0,5, 1,25, 2,5 NiCl₂·6H₂O (240 /)+HCl (80%) 30 60 . , -28 64 30 . MetrohmAutolab (NOVA 2.1.4.), Ag/AgCl_{sat} -0,7 +0,7 10^{-3} N 1 H_2SO_4 HCl Polarization ASTMG59 Standart. Rezistance .1 .2). icorr, 16 -1E-3 -14

i 10⁶, A/cm² lg lil, A/cm² 1E-5 1E-6 -1E-7 1E-8 --0,45 -0,35 E, V -0,30 -0,25 -0,50 S, cm² .1. .2. H₂SO₄ Fe-W (1) 0,1 (2) (1) (2)

```
(
                                                                                , e-mail: ngrigoryan@muctr.ru
                                                                                                            (50-75°).
                                                              Ni^{2+} 0.06-0.5 / .
                                                             08 .
                                                                                  -7
ZnO 9,94; H<sub>3</sub>PO<sub>4</sub> 18,98; HNO<sub>3</sub> 7,93; Ni(NO<sub>3</sub>)<sub>2</sub> 6H<sub>2</sub>O 0,30; FeCl<sub>3</sub>·6H<sub>2</sub>O 0,28.
                                                                                                          4,0 - 4,3;
                                                                70°C
5-10 / <sup>2</sup>
40; pH 2.
                                                                                     12
                                                                                                                        ) 35-45 .
                                          0,06-0,15 /
                                                                                     70^{\circ}
6-6.5 / ^{2}
                        45-50 .
                                                                                               35°
                                   20°
                                                                          -2020-028
```

```
-1(2 )- 2-
                     2,5-
         2
                 3
                                              osipova_vp@mail.ru
                  -1(2)-
                                 1, 2
                                                             3, 4
                                           2-
                                                                                                                    )
                                                            H<sub>3</sub>C
                                                          Ad = 1-
                                        40.91 \pm 0.02
                                                              22.01 \pm 0.02
                                                                                    82.22 \pm 0.04
                                                                                                        68.82 \pm 0.01
(
            ), %
                                        16.91 \pm 0.04
                                                              10.15 \pm 0.05
                                                                                    -26.82 \pm 0.04
                                                                                                         6.13 \pm 0.03
                                                          2
                                                                                      CH_3CN
                      ^{n}Bu_{4}NClO_{4},\,C=5\qquad \text{, Ag/AgCl, }v=0.2\quad \cdot \ ^{-1})
             (0.1)
                                                                                                            1, 2
                                                                        2^{-\bullet}. O_2
                                                      +0.49 ,
                                                   1-4
                                                                                    2-•,
                                                                                                         10.65)
                                                =347
                                                                                                                   2-•
                                                                      3,
                  (6.13÷16.91%
                                                       ),
                                                                           3
                                         (26.82%
                                                                                   -1(2)-
                                                            2,5-
                         2-•,
1-4
                                                         2,6-
                                   2-
                                                                                    19-03-00006 .
```

```
2
                                                   osipova_vp@mail.ru
                                                                         CH_3CN
                                                                                                                         (0.1
<sup>n</sup>Bu<sub>4</sub>NClO<sub>4</sub>, C=5
                                 Ag/AgCl, v=0.2
                                                                              O_2^{\bullet -},
                                                                                                               (pH 10.65)
                                                                        =347 ,
                                      29.56 \pm 0.04
                                                           42.64\pm0.02
                                                                                22.14 \pm 0.06
                                                                                                          48.19\pm0.02
               ), %
               , %
                                       -56.05 \pm 0.03
                                                            23.35\pm0.03
                                                                                 \textbf{-31.84} \pm 0.31
                                                                                                           \text{-}46.5 \pm 0.04
                                                                                                 O_2,
                                                                                                     1-4
                                         0.05 \div 0.20 ,
                                                     RSH + 2^{-\bullet} RS^- + HO^{\bullet}
                    (22.14÷48.19%
                                                                  ),
                                                                                                                 HS-
               2,
23%.
                                                                                                                              1-4,
                                                                     O_2^{\bullet -},
                                                                                                      20-13-00084).
```

```
[1-5].
                                                                      [6-8].
                                                 a
                                                            =0,
                              ,Е -
                                                   {C ,E }
                                                                            C \in X и E \in R_+^s
                                                                                                       [9].
                                                                                                    DFT/B3LYP
                      GAUSSIAN.
                                               IEF
                                                                                            ClO_4
                                                                                                      IO_4
       [Li<sup>+</sup>HalO<sub>4</sub><sup>-</sup>]
                                                                                                                   Li^+
          HalO_4,
                                                                                [MeOHR]<sup>0</sup>
[10].
         1.
        .-
2.
                                        , 2006. -184 .
                                                                               . 2007. . 9.
                                                                                              3. . 240-245.
        3.
                                                                               . 2009. 2. . 41-46.
        4.
                              . 2009.
                                         1. . 32-35.
                     . 2008.
                                2 (144). . 67-71.
        6.
                                         . .//
                                    -2010. 2010. . 151-153.
           7.
                                           . .//
                                                                                                      . 2010. . 12.
4. . 386-393.
        8.
                                          . .//
                                    -2015. 2015. . 119-120.
                       . .//
                    -2018. 2018. . 158-160.
                               .: Chenneling 2016 Books of Abstract. P. 39.
         10. Popova A.A.//
```

e-mail: ang.popova@gmail.com,

.: 8(8772)523217

______, · · · ,

ang.popova@gmail.com

[1-3].

•

$$\frac{\partial c(g,t)}{\partial t} = S(C,g,t) = F[C] = \frac{1}{2} \int_0^g K(g-n,n) C(g-n,t) C(n,t) dn - C(g,t) \int_0^\infty K(g,n) C(n,t) dn,$$

$$C(g,t) - g \qquad t; K(g,n) - g \qquad n.$$

g n

 $F[C] = F[C]_c + F[C]_d + F[C]_s ,$ [4-8]:

 $F[\mathcal{C}]_c$ — оператор изменения концентрации в результате коагуляции, $F[\mathcal{C}]_d$ — $F[\mathcal{C}]_s$

F[C] g

g n.

[9]. F[C],

$$\begin{split} \frac{\partial \mathcal{C}(g,t)}{\partial t} &= S(\mathcal{C},g,t) = F[\mathcal{C}] = \frac{1}{2} \int_0^g K(g-n,n) \, \mathcal{C}(g-n,t) \mathcal{C}(n,t) dn - \\ &- \mathcal{C}(g,t) \int_0^\infty K(g,n) \mathcal{C}(n,t) dn + \mathcal{C}(n,t) \left[\int_0^\infty \int_0^\infty K(g,n) D_{gn} dn dT + \int_0^\infty \int_0^\infty K(g,n) \varphi(x) dx dn \right] \end{split}$$

.

». , 2018. . 101-102.

4. .., ..// : .2019. .270. 5. .., ..// XXXVI XXXII . -

7. .., .., RU 2687416 C1, 13.05.2019.

8. . ., . . .// .:

. - . ., .110-2018. .15-16.

```
romanyuknazar@mail.ru
                        [1].
                                                                 [2].
     [3].
                                          0,75
                                                                        NaNO_3
                                                               0,15
         (2, 3, 4,
                               NaNO₃ H₃BO₃
                   ма мк
                             ма мк
                                       ма Мк
                                                MA
                                                    МК
              МК
                          дистиллированная вода
=0,97,
               96 %
```

3. Al-Amshawee S., Yunus M.Y. B. M., Azoddein A. A. M. [et al.] $/\!/$ J. Chem. Engin. 2020. Vol. 380. 122231.

```
«
                                                                romanyuknazar@mail.ru
                                             [1].
(
                                                                                        ),
      . .).
          [2].
                                                                                         [3].
                              <sub>2</sub>SO<sub>4</sub>, 60 / Fe<sup>2+</sup>;
<sub>2</sub>SO<sub>4</sub>, 20 / Cu<sup>2+</sup>;
           I - 150 /
           II - 150 /
                                 <sub>2</sub>SO<sub>4</sub>, 60 / Fe<sup>2+</sup>, 20 / Cu<sup>2+</sup>.
           III - 150 /
                                                                                            1,5
3,5 .
                                                                                                                    60 /
                                                                                                                                                       (II)
    150 / H_2SO_4,
                                               I.
                              \mathrm{Fe}^{2+}
                                                                                           Fe^{3+}.
                                                II,
                                                                            150 /
                                                                                                                        20 /
                                                                                                                             =78,5 %.
Cu^{2+}, (
                                                                                                 45,3 %.
                        III).
                                                              (III),
                                                                                                                 - -20.1/15.
         «
                                                                                    »,
```

- 1. Jansone-Popova S., Moinel A., Schott J.A. [et al.] // Environ. Sci. Technol. 2019. Vol. 53. P. 878-883.
 - 2. Briff J., Sinagra E., Blundell R. // Heliyon. 2020. Vol. 6 (8). e04691.
 - 3. Yin X., Shao P., Ding L. [et al.] // Environ. Sci.-Nano. 2019. Vol. 6. P. 3307-3315.

T Re-Cu-Se

e-mail: elza_salahova@mail.ru Re-Se-Cu 2.0 2 . Pt, Cu, Ni 75°, 30 60 IVIUMSTAT. -5 CuK -NETZSCH STA 449F3A-0835-M 20-900 10 / 900 o C 2 30 / 900oC. 95-100, 250-280 300-400

<u>. . .,</u> . ., . . ., . . .,

e-mail: <u>elza_salahova@mail.ru</u> , ,

,

, CdSe, CdS, CdTe, PbS, ReSe, ZnS, ReTe,ReS . .

, , , ,

Re-Mo .

75° ,

IVIUMSTAT.

 $75-80^{0}$,.

Re-

10 410°.

(, e-mail: abr-aleksey@yandex.ru 1-6 / La(NO₃)₃·6H₂O, 0,5-2 / KMnO₄, , 18-30°, 2 2,0-3,0, 2-1 $La_2O_3,\,MnO_2,\,MgO\quad \, Mg(OH)_2.$ 170 (500-). 1000 (SD test ISO 4536) . SD test La,Mn-30 20 0,5 (ASTM B117) 2-1 240

. , , , ; 13,65 13,15 . , (%) 240 18,1 20,8%

109

______1 «

1

thiophen@mail.ru

1-9, :

»,

3,4 7

. 8 9

2-

(19-29-08003)

Au(I)

thiophen@mail.ru

(I) 1-5: LSAu(I)PPh₃,

$$tBu$$
OH
OH
OH
 $AuPPh_3$

$$R = H(2); CF_3 (3)$$

1

tBu
OH
tBu
N
S
AuPPh₃
4
tBu
N
S
AuPPh₃
5

Au(I) - 1-5 . - 0.77 - 0.96

- ,

 $\left[AuPPh_{3}\right]^{+}.$

tBu OH tBu OH [AuPPh₃]⁺ tBu ОН Димеризация Внутримолекулярный ЕТ

1.00 - 1.18 . 1.60 - 1.67

(19-29-08003)

Nb

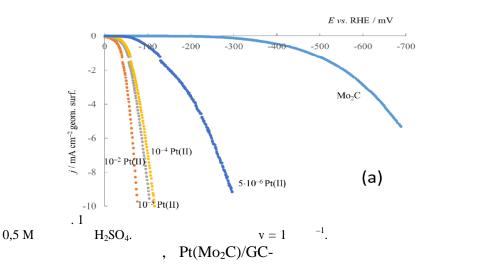
```
lady.cristin4ik@yandex.ru
                                                                                       \begin{array}{ccc} j_a \!\!\! = & 0.10 \text{-} 0.20 \\ ( & ) & \end{array}
                       [1],
 A/c^{-2}
         Nb_2O_5
                                                                                               g-Nb_2O_5
(
             0.6
                                                                  2
                      ~18-30
                                                                                               Nb_2O_5
                                    1 _2SO_4 + 1\% HF.
                                                                                       S = 800 ^{2}/.
                                          ( ) Nb
                                                                 (U_a)
                                                                                                    (t).
            U_{a}
                                [1]).
                                                                                                  [1,2].
                                                                   ).
                                     j (t)
U_{a}
                      U_a = 60 ,
                                       , 1
            d_0 = 1.1 - 1.9
                                           h = 0.6 - 1.2
                                                                      80-130
                                                                .1)
(d_o=1.1-1.7 , h=0.6-1.4
                                                        (t=1)
                                                  70
                                                                            d_{o}
                  0.7
                            1.4
                                      , h=0.6-1.8
                                                                  . 1. -
Nb,
1% HF
                                                                                                    _2SO_4 +
                                                                  1% HF
2 (,)
                                                                                         U =60
2020. T. 22.
              1. P. 124.
                   . 2015. . 147. 2. . 81.
```

```
BaLaIn_{0.5}Y_{0.5}O_{4}
        2
                                                Natalia.Tarasova@urfu.ru
                                             (500 - 700 \, {}^{\circ}\text{C}),
                                                                           10 - 15
                                                                                            %
                  ABO_3.
                                                                                                        AA BO<sub>4</sub>
                                                    BaLaInO_{4} \\
[Ba, LaO]
                                      [Ba_{3\!4}La_{1\!4}InO_3]
                                                                                     (0.62
           ),
                                                                  [Ba, LaO].
Ba/La 9
                                                                                            12.
                 ~ 1.5
             (
                                                                           )
                               BaLaInO<sub>4</sub>,
```

21-73-10009)

```
Ba_{1+}\ La_{1-}\ In_{0.5}Y_{0.5}O_4
   1
        2
                                             Natalia.Tarasova@urfu.ru
                                         1957 .
              AX(A BX_3)_n,
                                                                                n –
                                 [A/A BX_3],
                                                                               [A/AX].
                             AA BX_4 (n = 1)
                                                                                      A_2BX_4
                                      K_2NiF_4.
                                                                                                                   [BX_6]
                                                              В
( . . = 6).
                                                                                                   In^{3+}
AA\;BX_4
                                  BaLaInO_{4}. \\
                                                                            In-
                                                                        Ba-
                                                                                                  LaInO_3
                                                                                                               Ba_2In_2O_5\\
                                                                              BaLaInO<sub>4</sub>
                                                        ~ 1.5
BaLaInO<sub>4</sub>
                                                                           )
                                   BaLaInO<sub>4</sub>.
                       Ba_{1+}\; La_{1-}\; In_{0.5}Y_{0.5}O_4,
                                                                              (
                                                                                          21-73-10009)
```

```
, \overline{125047},
                                                                                                                                              9,
                                                   8-905-519-74-77, membr_electr@mail.ru.
                                        H_2SO_4
                                                                                                                                                                     SO_3
SO_2.
                                                    NaOH
                                                                                       H_2SO_4
            Na_2SO_4
                                                       [1].
                                                                                                             Na<sub>2</sub>SO<sub>4</sub>
                                                                                                                                   Na<sub>2</sub>SO<sub>4</sub>
                                                                                                                                                             [2].
                                   NaOH
                                                                                                                                                       H_2SO_4
                                           Na<sub>2</sub>SO<sub>4</sub>
                                                                                              \begin{array}{cc} H_2SO_4 & Na_2SO_4. \\ 100\text{-}150 & / & [1]. \end{array}
                              70-80%,
H<sub>2</sub>SO<sub>4</sub>,
                                                                          H_2SO_4
                                                                                         100-150 /
                                                              H_2SO_4
SO_4^{2-}
                                                          \boldsymbol{H}^{\scriptscriptstyle +}
                                                                                                              H^{+}
                                                                                                                            H_2SO_4
                                                                                                               SO<sub>4</sub><sup>2</sup>-,
                                                                                                                                                               1.
                                                                                                                          SO_4^{2-}
                                                                       0,5
                                                                                                                                                 H_2SO_4
                                                                                   0,2
                                     -40
                                                                                                             SO<sub>4</sub><sup>2-</sup>
   0,25
                      4,25
                                   [3].
                                                                                                                                                             H<sub>2</sub>SO<sub>4</sub>
                                                                                                                                                         0,2.
                                                                                                                                                         -41
                                                                                                                        H<sub>2</sub>SO<sub>4</sub>
                                                                                                                                                                   608 /
                                                                                                                                                                 H_2SO_4
                             649
                                                                                                                                                                    SO<sub>4</sub><sup>2</sup>-.
                                                                                                       H_2SO_4
                                                                                                                              \overset{\cdot}{H_2}SO_4
                                                                                                                   H_2SO_4
                                                                                               ),
                                                 5-10 ,
1.
                                                                                                                                                                    H_2SO_4
2.
1.
                    , 1989. 240 .
                               , 1985. 256 .
                                                                                                                                       , 2002, .159.
```


```
, 125047, , 8-905-519-74-77, membr_electr@mail.ru.
                                                                                                                                                                         9, :
               Cr(VI)
                                                                                                                                                    SO<sub>4</sub><sup>2</sup>- PO<sub>4</sub><sup>3</sup>-.
               CN
                                                                                                                                       ),
                                                                                                                                                                                       (
CI<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, Fe<sup>3+</sup>, Cr(VI), S<sub>2</sub>O<sub>8</sub><sup>2-</sup>
```

116

 Pt/Mo_2C

 $[PtCl_4]^{2-} + 2 \ e \quad Pt + 4 \ Cl^- \qquad , \qquad 2 \ MoO_3 + C + 12 \ H^+ + 12 \ e \quad Mo_2C + 6 \ H_2O.$

 $Pt(Mo₂C)/GC- \qquad (. 1),$

0.5 H₂SO₄.

Pt(Mo₂C)/GC-

- 1. Michalsky R., Zhang Y.-J., Peterson A.A. Trends in the Hydrogen Evolution Activity of Metal Carbide Catalysts // ACS Catal. 2014. V. 4(5). P. 1274–1278.
- 2. Gao Q., Zhang W., Shi Zh., Yang L., Tang Y., Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution // Adv. Mater. 2019. V. 31(2). P. 3010-3013.

Sr-Ho-Fe-O

______, · ., · ., · .,

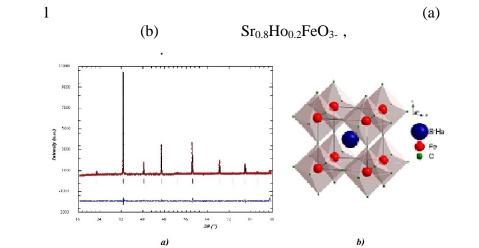
· ·

yanachv@mail.ru

·

.

3d-


.

, Sr-Ho-Fe-O.

«CelRef 4.0», – «FullProf 2008».

 $$25^{\circ}$$. $, \qquad Sr\text{-Ho-Fe-O}$ $1100^{\circ} \qquad Sr_{1\text{-}}\text{ Ho FeO}_{3\text{-}}\text{ .}$

 Sr_{1-} Ho FeO_{3-} . Sr_{1-} Ho FeO_{3-} (0.1 x 0.2 0.9 x 1.0),

1 - , (a), (b) $Sr_{0.8}Ho_{0.2}FeO_{3-}$ 24 .

Sr-Ho-Fe-O.

1.

alexchukanov@yandex.ru

[4].

[2].

 $: \quad {}_{xx}n_x + \quad {}_{xy}n_y = 0; \quad {}_{yx}n_x + \quad {}_{yy}n_y = 0,$

 n_x , n_y $v_x n_x + v_v n_v = 0.$

$$\sigma_{xx} = 1 + \frac{a^{2}(y^{2} - x^{2})}{(x^{2} + y^{2})^{2}}; \ \sigma_{xy} = \frac{-2a^{2}xy}{(x^{2} + y^{2})^{2}}.$$

$$\sigma_{yy} = f(x) + \frac{a^{2}(x^{2} - y^{2})}{(x^{2} + y^{2})^{2}}.$$

$$\sigma_{xx} = \frac{a^{2}(y^{2} - x^{2})}{(x^{2} + y^{2})^{2}}.$$

$$\sigma_{xy} = f(x) + \frac{a^{2}(x^{2} - y^{2})}{(x^{2} + y^{2})^{2}}.$$

$$\sigma_{xx} = \frac{a^{2}(x^{2} - y^{2})}{(x^{2} + y^{2})^{2}}.$$

$$\sigma_{xx} = \frac{a^{2}(x^{2} - y^{2})}{(x^{2} + y^{2})^{2}}.$$

$$\sigma_{xx} = \frac{a^{2}(x^{2} - y^{2})}{(x^{2} + y^{2})^{2}}.$$

0; $x_{yx} + y_{yy} = 0$).

$$\varphi = x \left[1 + \frac{a^2}{x^2 + y^2} \right]; \ \psi = y \left[1 - \frac{a^2}{x^2 + y^2} \right].$$

$$\sigma_{xx}, \sigma_{xy}$$

$$(x^2 + y^2)$$

 $-a^2 << a^2$).

 $\sigma_{xy} = \frac{-Bx}{x^2 + y^2} - \frac{2Cxy}{(x^2 + y^2)^2}.$ $\sigma_{yy} = \frac{-By}{x^2 + y^2} + C \frac{x^2 - y^2}{(x^2 + y^2)^2} + f(x)$

$$\sigma_{xy} = \frac{-ax}{a^2 + x^2} - \frac{2a^2xy}{(x^2 + y^2)^2}, \quad \sigma_{yy} = -\frac{2ax}{a^2 + x^2} + \frac{ay}{x^2 + y^2} + a^2 \frac{y^2 - x^2}{(x^2 + y^2)^2},$$

. - 2020. - . 21. - . 4 (76). - . 376 - 389.

»: . . (18.09.2020 .); , : 2020. - .

459-463.

.- 2020. -. 18. - 3.- . 130-136.

2. alexchukanov@yandex.ru [1]

[2]

. C $S_z =$ S.

 $S(z,), \qquad S_{z} = 0, \qquad S \qquad 0.$ $\sigma_{zz} = 1 + \frac{\alpha^{3}}{2} \frac{\rho^{2} - 2z^{2}}{(z^{2} + \rho^{2})^{\frac{5}{2}}}; \quad \sigma_{z\rho} = -\frac{3\alpha^{3}}{2} \frac{z\rho}{(z^{2} + \rho^{2})^{\frac{5}{2}}}. \qquad \sigma_{z\rho} = -\frac{3Dz\rho}{(z^{2} + \rho^{2})^{\frac{5}{2}}}.$ $\rho\sigma_{\rho\rho} = \int \int 3D\rho^{2} \frac{\rho^{2} - 4z^{2}}{(z^{2} + \rho^{2})^{\frac{7}{2}}} d\rho + f(z)$ ZZ

z (z < a/2) $z > a/2 - \frac{1,44a}{\rho} - \frac{2a^{3}\rho^{2}}{(\rho^{2} + z^{2})^{\frac{5}{2}}} - \frac{a^{3}\rho^{4}}{2z^{2}(\rho^{2} + z^{2})^{\frac{5}{2}}}.$ $\sigma_{\rho\rho} = \frac{3a}{4\rho} \left| 1 - \frac{a^2}{\rho^2} \right| + \frac{45}{16} \frac{a^3 z^2}{\rho^5}$ $(zz = 1, z = zz = \frac{3}{4})$ [3]. $_{i}$

 $\sigma_i = \frac{1}{\sqrt{2}} \left[\left(\sigma_{zz} - \sigma_{\rho\rho} \right)^2 + \sigma_{\rho\rho}^2 + \sigma_{zz}^2 + 6 \sigma_{z\rho}^2 \right]^{\frac{1}{2}}.$

()).

I II.

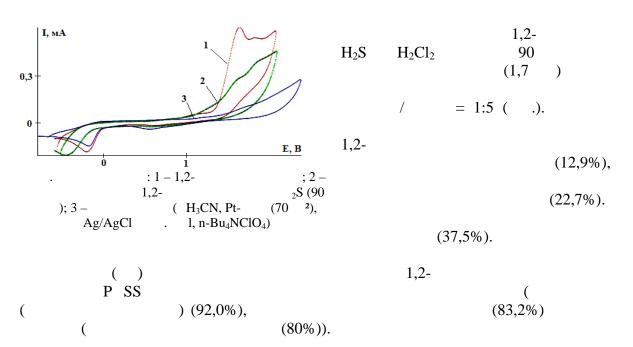
I II

): , . 113-114.

, - .395-399.

1,2-

elenshin@rambler.ru


[1].

 $H_2S\\$

 S_8 ,

[2]. S- C_5-C_8 H_2S

 $H_2Cl_2\\$ [3]. 1,2-

- 1. Fron-tana-Uribe B. A., Little R. D., Ibanez J. G., Palma A., Vasquez-Medrano R. // Green Chem. 2010. V. 12. I. 12. P. 2099.
- 2. Moiseev I. // Russ. Chem. Rev. 2013. V. 82. N. 7. P. 616.

1. . 108. . 2018. . .//

(18-29-24001)

1 elenshin@rambler.ru 2 [1]. [2]. I-V 2H-1--2-H₃CN: H_2 l_2 (1:1): Ш IV Ptd=3,14(S = 70) I-V Red-Ox $(0 \div (-2,0)$ $I = f(v^{1/2}); E = f(v^{1/2}); I = f(C),$ $0,97 \div 0,99$ I-V (I) (II)III-V 7 (V)

- 1. Medina F. G., Marrero J. G., Macías-Alonso M., González M. C., Córdova-Guerrero I., García A. G. and Osegueda-Roblesa S. // J. Natural Product Reports. 2015. V. 32 P. 1472.
- 2. Annunziata F., Pinna C., Dallavalle S., Tamborini L., Pinto A.. // Int. J. of Research in Pharmac. Sciences. $2020.\ V.\ 21.\ N\ 13.\ P.\ 4618.$

20-03-00446)

-

elenshin@rambler.ru [1]. (III)(II) O,O-S,S- H_2S 25° [2]. H_2Cl_2 Sb(V), Sn(IV)N,N--(2-[3]. () -e $[Ph_2Sn(Cat-N-SQ)]$ $[Ph_3Sb(Cat-NH-Cat)]$ I, II, 4- $Ph_{3}Sb(Cat+NH-Cat)) \left[Ph_{3}Sb(Cat+NH-Cat)\right]^{+}$ III (.1). Pt- $CH_2Cl_2/0.2M$ (n-Bu₄)NClO₄ RSH R_2S_2 Pt-anode, -2H (.2).Ph₃Sb (Cat-NH-Cat)] Степень Степень ■ 1.5 ч ■ 3 ч регенерации медиаторов, % (1,5)регенерации медиаторов, % ■ [Ph 2Sn(Cat-NH-Cat)] 80 **80 60 60** I-III. **40** 40 20 20 (3) Ш Ш I П . 2 – . 1 – (3-5%).[Ph₃Sb(Cat-NH-Cat)] I-III (1,5)I-III $[Ph_2Sn(Cat-N-SQ)]$ [Ph₃Sb(Cat-NH-Cat)] 1. , 2016. 440 c.

19-29-08003

. . //

5. . 300-306.

2.

3.

. 2017. . 43.

. 2021. . 47.

S-

elenshin@rambler.ru

« »

,

_

[1].

(1,7). H_2S $CH_3CN \begin{pmatrix} & & & \\ &$

 $H_2S \xrightarrow{\text{Pt-anode}} H\dot{S}$

: (RSH), $-(R_2S_2)$ (R_2S) : $+ H_2S$ R =

 H_2S

R + HS \longrightarrow RSH $\xrightarrow{\text{Pt-anode}}$ RS $\xrightarrow{\text{Rs}}$ R_2S_2 $\xrightarrow{\text{Rs}}$ RSR

H₃CN, Pt- , Ag/AgCl)

,	RSH (1,76)	$R_2S_2(1,62)$	R ₂ S (1,97)	
90	5,9/3,4	4,3/3,6	5,9/5,5	16,1/12,5
180	4,6/3,6	5,1/4,3	7,2/6,2	16,9/14,1

 $\vdots \\ Bu_4NClO_4/NaBF_4 \\ \vdots \\ n-$

RSH

. С

-

 $(H_2S_n, n=2\div 8),$

1. Yan M., Kawamata Y., Baran P.S. // Chem. Rev. 2017. V. 117. N. 21. P. 13230.

(20-13-00084)

```
2
                                           iyuzh@mail.ru
                                                                                               [1-3].
                                                     [4].
                                                                                                 CN
                                                                             [5].
                                                 (95-99%)
            /KI/Py
             [6].
                                                                   NH_4I
                                                                                                   I_2
        KI.
              I_2,
                 in situ.
                                                                                   NH_3,
                 NH_4^+
                                            I_2.
             NH_3
                                                                                      I_2
                                                                                                  НІ
                   N-
                                         NH_3
                                                                 I_2.
1. Yang J., Karver M.R., Li W., Sahu S., Devaraj N.K. // Angew. Chem. 2012. V. 51. . 5222–5225.
2. Anbarasan P., Schareina T., Beller M. // Chem. Soc. Rev. 2011. 40. . 5049–5067.
3. Kumar S., Dixit S.K., Awasthi S.K. // Tetrahedron Lett. 2014. V. 55. P. 3802–3808.
4. Anbarasan P., Schareina T., Beller M. // Chem. Soc. Rev. 2011. V. 40. . 5049–5067.
5. Marr A.C. // Catal. Sci. Technol. 2012. V. 2. P. 279–287.
6.
```

125

, shcherb@muctr.ru

)

з max.

Å).

, $V = \frac{10^{-3}}{nN_a c} (3),$ $d = \sqrt[3]{\frac{10^{-3}}{nN_c}} = \frac{11,84 \times 10^{-10}}{\sqrt[3]{nc}}.$

 $c = \frac{\frac{d}{10^{-3}}}{\frac{d^{3}\sqrt[3]{nN_{A}}}{\sqrt[3]{nN_{A}}}} = \frac{1,66 \times 10^{3}}{\frac{d^{3}\sqrt[3]{n}}{\sqrt[3]{n}}}, \qquad / \quad (d$

(n = 2)I-I

max, max

max,	max, /
4,94	1,25
2,20	1,19
1,70	1,15
1,52	0,95

[1], I–I [2] [3].

1.

. .; 2019. . 33. 3. . 50-52. 3.

valeria_bel@mail.ru,

)

: 5,10,15,20-(4'-,)-21,23-(4'-5,10,15,20-) , 5,10,15,20-([2-()]-5,10,15,20-(III)

NH₄F.

().

Na₂SO₄. 0,2 30-60

-25 2-3

NH₄F 15 65 60 20

60 - 65

-3863.2021.1.3 (075-15-2021-671)

127

```
2
                                                v.isaev@chph.ras.ru
                                                                    )
                             Li<sub>2</sub>O<sub>2</sub> -
        O_2^-
                                          Li_2O_2\\
Li_2O_2\\
                                                                                                                     [1].
                           [2]
                                              [3]
                                                              Li^+
                 Li_2O_2
                                                     K +
                                                                          N-
                                                                                     -N-
                                                          K<sup>+</sup>:Li<sup>+</sup>,
                                                                                                        )
                                                                                                  Li_2O_2
              K^{+}
                                                                                        Li^{+}
                             Li<sup>+</sup>
                                                                                                           1.1
                  «
1. Johnson L. et al. //Nature chemistry. – 2014. – . 6. – . 12. – . 1091.
2. Amanchukwu C. V., Chang H. H., Hammond P. T.//The Journal of Physical Chemistry C. – 2017. – .
121. - . 33. - . 17671-17681.
3.\ Landa-Medrano\ I.\ et\ al.\ // The\ Journal\ of\ Physical\ Chemistry\ C.-2017.-\ .\ 121.-\ .\ 7.-\ .\ 3822-3829.
                                                                               ( 19-43-04112).
```

Ni-W Ni-W-P

```
2
 3
                       evseevak@sklif.mos.ru
                      .)
                                               200 )
               Ni-W
                     Ni-W-P,
                          « » (50 ) « » (50 100 )
      Ni-W Ni-W-P
                                                        ».
               Ni-W-P
                                                       Ni-W.
                                                          -Ni-
W
Ni-W-P ( . 1).
        б
                            . 1.
                               Ni-W, - Ni-W-P.
              Ni-W-P
```

	20
,,	
	21
Zr0.84Y0.16O1.92	
:	22
	23
,,,	
BMImX (X = TFSI-, OTf-, DCA-)	24
	25
FE-W	26
,	
	29
,	
-5,10,15,20- (m-	20
,	30
	21
	31
	32
10,15,20-	
-)-2,3,7,8,12,13,17,18-	22
,	33
	34
• •	
,	
	35
· ., · .,	
-	
	l

_	36
,,,,	.,
- 45	37
,,,,	31
Mn _{1.5} Co _{1.5} O ₄	38
,,,,	30
	39
· ·, · · · ·	39
- ", "	
	40
1-	-1-
1-	41
,,,,	
	1-
-3-	42
,	42
Co_xTiSe_2	43
,,	
	44
,	
	45
,	
,	46
· ·, · · · ·	
	47
,	47
,	
-	48
· ·,	
IN SITU	
	49
,	

						50
	,	٠.,	• •,		20	
				()	
		-				51
	,	,	,	• •,		
						52
	,	· ·,	• •,	,	٠٠,	
					20	52
	,	,	,			53
	,	•	,			
						54
	,	,	,			
						55
	,					33
				: ,	,	5.0
	,	· ·,				56
	,	• •,			-	
						57
	,	,				
					CuCrSe ₂	58
	,	,	• ••	٠.,	,	
	-					7 0
						59
	• •,	• •,	• •,	,	• •	
						60
	,	,	,	,		00
						61
	• •,	٠.,	٠.,	٠.,		
• •,	•					
						62
	٠.,	,	,			
						63

• •	64
· ·, · · ·	
	65
,,,	
	66
,,	
;	68
,	
_	
	69
,,,	
N-	
	70
,,,	
,	
(N-	71
,,,	71
	72
,,	12
Ni-Cr Co-Cr	73
,	
	74
,	
,	75
· .,	
	76
· ., · ., · .,	
6	77
,	
-	70
,,,	78

	79
,,,	
N,N-	
	80
· ·, · · · · · · · · · · · · · · · · ·	
	81
· ·	
	82
,	
5,10,15,20- (4-	
)	83
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	84
,	85
-34 -32	86
,	97
,,,	87
; :	
	88
• •	
12	89
	90
· · · 5-	
-4-	91
,	
-	
	92
,,,,	
,,	93
- 	94

	95
MoSe2	
Modez	97
F-W	98
Fe-W ,	99
,	
	100
· ·, · · ·, · · ·,	
2,5-	
-1(2)- 2-	101
,	
-	102
• •	
	103
,	
	104
,,	105
,,,,	103
	106
, , , , ,	100
T Re-Cu-Se	107
,,,	
,	
-	108
2-1	
-,	
	109
-	
,	110
,,	110
Au(I)	111
-	111

,,, NIL	112
Nb	112
,	
$BaLaIn_{0.5}Y_{0.5}O_4$	113
· · · · · · · · · · · · · · · · · · ·	
,	
, $Ba_{1+} La_{1-} In_{0.5} Y_{0.5} O_4$	
-	114
• •	
	115
	116
Pt/Mo2C,	
-	
	117
· ·, · · ·, · · ·,	
Sr-Ho-Fe-O	118
· ·, · · · · · · · · · · · · · · · · ·	
	110
1.	119
· -	
2.	120
,	120
1,2-	
1,2-	121
· ·, · ·, · ·,	
· ·,	
	100
	122
· ·, · · ·, · · · · · · · · · · · · · ·	
_	123
,	123
S-	
	124
, -	.,

					125
,	,	,			
					126
,	· ·, -	,			
					127
,	,	,	,		
-					128
,	• •,	٠.,	,	٠.,	
,	٠.,	• •,	Ni-W	Ni-W-P	
					129

" - "
143405, ., . , . , . , . 1
.+7969-077-7272
e-mail: akalodgic.ru@gmail.com
www.ilpa-tech.ru

: www.elecond.ru

Разработка и производство конденсаторов

оксидно-электролитические алюминиевые конденсаторы

К50-15, K50-17, K50-27, K50-37, K50-68, K50-77, K50-80, K50-81, K50-83, K50-84, K50-85, K50-86, K50-87, K50-88, K50-89, K50-90, K50-91, K50-92, K50-93, K50-94, K50-95(чип), K50-96, K50-97(чип), K50-98, K50-99, K50-100, K50-101(чип), K50-102, K50-103, K50-104

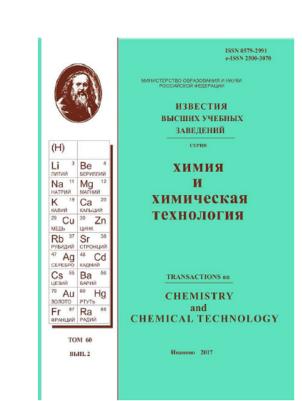
объемно-пористые танталовые конденсаторы

К52-1, К52-1М, К52-1БМ, К52-1Б, К52-9, К52-11, К52-17, К52-18, К52-19, К52-20, К52-21, К52-24, К52-26(чип), К52-27(чип), К52-28, К52-29, К52-30

оксидно-полупроводниковые танталовые конденсаторы

К53-1А, К53-7, К53-65(чип), К53-66, К53-68(чип), К53-69(чип), К53-71(чип), К53-72(чип), К53-74(чип), К53-77(чип), К53-78(чип), К53-82

суперконденсаторы (ионисторы)


K58-26, K58-27, K58-28, K58-29, K58-30, K58-31, K58-32, K58-33

накопители электрической энергии на основе модульной сборки суперконденсаторов нээ, мик, мич, ити

Система менеджмента качества сертифицирована на соответствие требованиям ISO 9001

Россия, 427968, Удмуртская Республика,г. Сарапул, ул. Калинина, 3 Тел.: (34147) 2-99-53, 2-99-89, 2-99-77, факс: (34147) 4-32-48, 4-27-53 e-mail: elecond-market@elcudm.ru, http://www.elecond.ru

Год основания — 1958 г. Периодичность — 12 выпусков в год Тираж — 400 экз. Язык публикаций — русский, английский Вид издания — печатная версия, электронная версия Импакт-фактор РИНЦ (2013 г.) — 0,577 Редакционная коллегия — международная Учредитель — ФГБОУ ВО «Ивановский государственный химико-технологический университет» Адрес редакции: пр. Шереметевский, 7, г. Иваново, 153000 тел.: +7(4932)32-73-07, e-mail: ivkkt@isuct.ru,

http://journals.isuct.ru/ctj

Журнал включен в международные базы данных RSCI Web of Science, Chemical Abstracts и EBSCO Publishing (США), а также в «Перечень рецензируемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата и доктора наук» (ВАК)

Журнал издается при содействии **Академии инженерных** наук им. **А.М. Прохорова**

« 1992

2017 = 0,489

(443)

· -

· Ulrich's International Periodicals Directory (Title Id: 419193)

CAS Source Index (CASSI)

. . .

«

»

XII

ISBN 978-5-905364-18-1

ISBN 978-5-905364-18-1